图像质量评估方法——结构相似性指数(SSIM)

发布时间:2023年12月25日

结构相似性指数(SSIM)是一种全参考图像质量评估方法,用于比较两幅图像的相似性。

SSIM的计算涉及到亮度(Luminance)、对比度(Contrast)和结构(Structure)三个方面的相似性。以下是SSIM的具体实现步骤:

  1. 计算图像亮度(L):
    • 使用高斯滤波器对原始图像和失真图像进行平滑处理。
    • 通过下式计算亮度:
  2. 计算图像对比度(C):
    • 使用高斯滤波器对原始图像、失真图像、以及它们的乘积进行平滑处理。
    • 通过下式计算对比度:
  3. 计算图像结构(S):
    • 通过下式计算结构:
  4. 计算 SSIM:
    • 最终的 SSIM 值通过将亮度、对比度和结构的相似性进行综合计算得到。
    • 其中,α, β, γ 是常数,一般取为 1。

在实际实现中,可以使用图像处理库(如OpenCV)提供的函数来执行图像的平滑处理、亮度、对比度和结构的计算。下面是一个简化的 Python 代码示例:

import cv2
import numpy as np

def ssim(img1, img2):
    k1 = 0.01
    k2 = 0.03
    c1 = (k1 * 255) ** 2
    c2 = (k2 * 255) ** 2

    mu_x = cv2.GaussianBlur(img1, (11, 11), 1.5)
    mu_y = cv2.GaussianBlur(img2, (11, 11), 1.5)

    sigma_x = np.sqrt(cv2.GaussianBlur(img1 ** 2, (11, 11), 1.5) - mu_x ** 2)
    sigma_y = np.sqrt(cv2.GaussianBlur(img2 ** 2, (11, 11), 1.5) - mu_y ** 2)
    sigma_xy = cv2.GaussianBlur(img1 * img2, (11, 11), 1.5) - mu_x * mu_y

    l = (2 * mu_x * mu_y + c1) / (mu_x ** 2 + mu_y ** 2 + c1)
    c = (2 * sigma_x * sigma_y + c2) / (sigma_x ** 2 + sigma_y ** 2 + c2)
    s = (sigma_xy + c2/2) / (sigma_x * sigma_y + c2/2)

    ssim_value = l * c * s
    return ssim_value

这个示例代码使用了 OpenCV 中的高斯滤波函数和基本的数组操作来实现 SSIM 计算。注意,具体实现可能会有一些调整和优化,取决于具体的应用场景。

文章来源:https://blog.csdn.net/kwdx2/article/details/135197090
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。