进而分析
H
?
Σ
M
F
=
m
t
o
t
a
l
?
R
?
G
F
×
V
?
G
F
+
∫
(
R
?
G
P
i
F
?
R
?
G
P
i
F
)
ω
?
M
F
d
m
i
?
∫
(
R
?
G
P
i
F
?
ω
?
M
F
)
R
?
G
P
i
F
d
m
i
\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F} \right) \vec{\omega}_{\mathrm{M}}^{F}}\mathrm{d}m_{\mathrm{i}}-\int{\left( \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right) \vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}\mathrm{d}m_{\mathrm{i}}
HΣM?F?=mtotal??RGF?×VGF?+∫(RGPi?F??RGPi?F?)ωMF?dmi??∫(RGPi?F??ωMF?)RGPi?F?dmi?,有:
H
?
Σ
M
F
=
m
t
o
t
a
l
?
R
?
G
F
×
V
?
G
F
+
∫
(
R
?
G
P
i
F
T
R
?
G
P
i
F
?
E
3
×
3
?
R
?
G
P
i
F
R
?
G
P
i
F
T
)
d
m
i
?
ω
?
M
F
=
m
t
o
t
a
l
?
R
?
G
F
×
V
?
G
F
+
[
I
]
Σ
M
/
G
F
?
ω
?
M
F
H
?
Σ
M
/
G
F
=
H
?
Σ
M
F
?
m
t
o
t
a
l
?
R
?
G
F
×
V
?
G
F
=
[
I
]
Σ
M
/
G
F
?
ω
?
M
F
\begin{split} &\vec{H}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\int{\left( {\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}}\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}\cdot E^{3\times 3}-\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}{\vec{R}_{\mathrm{GP}_{\mathrm{i}}}^{F}}^{\mathrm{T}} \right)}\mathrm{d}m_{\mathrm{i}}\cdot \vec{\omega}_{\mathrm{M}}^{F} =m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \\ &\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\vec{H}_{\Sigma _{\mathrm{M}}}^{F}-m_{\mathrm{total}}\cdot \vec{R}_{\mathrm{G}}^{F}\times \vec{V}_{\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \end{split}
?HΣM?F?=mtotal??RGF?×VGF?+∫(RGPi?F?TRGPi?F??E3×3?RGPi?F?RGPi?F?T)dmi??ωMF?=mtotal??RGF?×VGF?+[I]ΣM?/GF??ωMF?HΣM?/GF?=HΣM?F??mtotal??RGF?×VGF?=[I]ΣM?/GF??ωMF?? 则相对于质心点
G
G
G 存在:
{
τ
?
G
F
=
d
h
?
G
F
d
t
τ
?
G
/
O
F
=
d
h
?
G
/
O
F
d
t
+
V
?
O
F
×
P
?
G
F
P
?
G
F
=
m
t
o
t
a
l
V
?
G
F
\begin{cases} \vec{\tau}_{\mathrm{G}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}}^{F}}{\mathrm{dt}}\\ \vec{\tau}_{\mathrm{G}/\mathrm{O}}^{F}=\frac{\mathrm{d}\vec{h}_{\mathrm{G}/\mathrm{O}}^{F}}{\mathrm{dt}}+\vec{V}_{\mathrm{O}}^{F}\times \vec{P}_{\mathrm{G}}^{F}\\ \vec{P}_{\mathrm{G}}^{F}=m_{\mathrm{total}}\vec{V}_{\mathrm{G}}^{F}\\ \end{cases}
????τGF?=dtdhGF??τG/OF?=dtdhG/OF??+VOF?×PGF?PGF?=mtotal?VGF??
对
H
?
Σ
M
/
O
F
\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}
HΣM?/OF?进一步推导,可得:
H
?
Σ
M
/
O
F
=
∑
i
N
R
?
O
P
i
F
×
P
?
P
i
F
=
∑
i
N
m
P
i
?
R
?
O
P
i
F
×
(
ω
?
F
×
R
?
O
P
i
F
)
=
∑
i
N
m
P
i
?
R
?
~
O
P
i
F
?
(
ω
?
~
F
?
R
?
O
P
i
F
)
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
0
?
z
O
P
i
F
y
O
P
i
F
z
O
P
i
F
0
?
x
O
P
i
F
?
y
O
P
i
F
x
O
P
i
F
0
]
?
[
I
^
J
^
K
^
]
T
(
[
0
?
w
z
P
i
F
w
y
P
i
F
w
z
P
i
F
0
?
w
x
P
i
F
?
w
y
P
i
F
w
x
P
i
F
0
]
?
[
x
O
P
i
F
y
O
P
i
F
z
O
P
i
F
]
)
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
w
x
P
i
F
?
(
x
O
P
i
F
y
O
P
i
F
)
w
y
P
i
F
?
(
x
O
P
i
F
z
O
P
i
F
)
w
z
P
i
F
?
(
y
O
P
i
F
x
O
P
i
F
)
w
x
P
i
F
+
[
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
w
y
P
i
F
?
(
y
O
P
i
F
z
O
P
i
F
)
w
z
P
i
F
?
(
z
O
P
i
F
x
O
P
i
F
)
w
x
P
i
F
?
(
z
O
P
i
F
y
O
P
i
F
)
w
y
P
i
F
+
[
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
w
z
P
i
F
]
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
?
x
O
P
i
F
y
O
P
i
F
?
x
O
P
i
F
z
O
P
i
F
?
y
O
P
i
F
x
O
P
i
F
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
?
y
O
P
i
F
z
O
P
i
F
?
z
O
P
i
F
x
O
P
i
F
?
z
O
P
i
F
y
O
P
i
F
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
=
[
I
^
J
^
K
^
]
T
[
∑
i
N
m
P
i
?
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
?
∑
i
N
m
P
i
?
x
O
P
i
F
y
O
P
i
F
?
∑
i
N
m
P
i
?
(
x
O
P
i
F
z
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
y
O
P
i
F
x
O
P
i
F
)
∑
i
N
m
P
i
?
[
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
?
∑
i
N
m
P
i
?
(
y
O
P
i
F
z
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
z
O
P
i
F
x
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
z
O
P
i
F
y
O
P
i
F
)
∑
i
N
m
P
i
?
[
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
??
=
[
I
^
J
^
K
^
]
T
[
I
x
x
I
x
y
I
x
z
I
y
x
I
y
y
I
y
z
I
z
x
I
z
y
I
z
z
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
=
[
I
^
J
^
K
^
]
T
[
I
x
x
w
x
P
i
F
+
I
x
y
w
y
P
i
F
+
I
x
z
w
z
P
i
F
I
y
x
w
x
P
i
F
+
I
y
y
w
y
P
i
F
+
I
y
z
w
z
P
i
F
I
z
x
w
x
P
i
F
+
I
z
y
w
y
P
i
F
+
I
z
z
w
z
P
i
F
]
=
[
I
^
J
^
K
^
]
T
[
H
x
H
y
H
z
]
\begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \left( \tilde{\vec{\omega}}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} 0& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}& y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}& x_{\mathrm{OP}_{\mathrm{i}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}& 0& -w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ -w_{\mathrm{y}_{\mathrm{Pi}}}^{F}& w_{\mathrm{x}_{\mathrm{Pi}}}^{F}& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right)} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \,\, \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \\ &=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] \end{split}
HΣM?/OF??=i∑N?ROPi?F?×PPi?F?=i∑N?mPi???ROPi?F?×(ωF×ROPi?F?)=i∑N?mPi???R~OPi?F??(ω~F?ROPi?F?)=i∑N?mPi????I^J^K^??T?0zOPi?F??yOPi?F???zOPi?F?0xOPi?F??yOPi?F??xOPi?F?0????I^J^K^??T??0wzPi?F??wyPi?F???wzPi?F?0wxPi?F??wyPi?F??wxPi?F?0????xOPi?F?yOPi?F?zOPi?F????=i∑N?mPi????I^J^K^??T?[(yOPi?F?)2+(zOPi?F?)2]wxPi?F??(xOPi?F?yOPi?F?)wyPi?F??(xOPi?F?zOPi?F?)wzPi?F??(yOPi?F?xOPi?F?)wxPi?F?+[(xOPi?F?)2+(zOPi?F?)2]wyPi?F??(yOPi?F?zOPi?F?)wzPi?F??(zOPi?F?xOPi?F?)wxPi?F??(zOPi?F?yOPi?F?)wyPi?F?+[(xOPi?F?)2+(yOPi?F?)2]wzPi?F???=i∑N?mPi????I^J^K^??T?(yOPi?F?)2+(zOPi?F?)2?yOPi?F?xOPi?F??zOPi?F?xOPi?F???xOPi?F?yOPi?F?(xOPi?F?)2+(zOPi?F?)2?zOPi?F?yOPi?F???xOPi?F?zOPi?F??yOPi?F?zOPi?F?(xOPi?F?)2+(yOPi?F?)2???wxPi?F?wyPi?F?wzPi?F???=?I^J^K^??T?∑iN?mPi???[(yOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(yOPi?F?xOPi?F?)?∑iN?mPi???(zOPi?F?xOPi?F?)??∑iN?mPi???xOPi?F?yOPi?F?∑iN?mPi???[(xOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(zOPi?F?yOPi?F?)??∑iN?mPi???(xOPi?F?zOPi?F?)?∑iN?mPi???(yOPi?F?zOPi?F?)∑iN?mPi???[(xOPi?F?)2+(yOPi?F?)2]???wxPi?F?wyPi?F?wzPi?F???=?I^J^K^??T?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz????wxPi?F?wyPi?F?wzPi?F???=?I^J^K^??T?Ixx?wxPi?F?+Ixy?wyPi?F?+Ixz?wzPi?F?Iyx?wxPi?F?+Iyy?wyPi?F?+Iyz?wzPi?F?Izx?wxPi?F?+Izy?wyPi?F?+Izz?wzPi?F???=?I^J^K^??T?Hx?Hy?Hz????
其中:
若有:
ω
?
=
[
I
^
J
^
K
^
]
T
[
ω
1
ω
2
ω
3
]
,
R
?
=
[
I
^
J
^
K
^
]
T
[
r
1
r
2
r
3
]
\vec{\omega}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \omega _1\\ \omega _2\\ \omega _3\\ \end{array} \right] ,\vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right]
ω=?I^J^K^??T?ω1?ω2?ω3???,R=?I^J^K^??T?r1?r2?r3???,则有如下叉乘的计算:
ω
?
×
R
?
=
ω
?
~
?
R
?
=
[
I
^
J
^
K
^
]
T
(
[
0
?
ω
3
ω
2
ω
3
0
?
ω
1
?
ω
2
ω
1
0
]
?
[
r
1
r
2
r
3
]
)
\vec{\omega}\times \vec{R}=\tilde{\vec{\omega}}\cdot \vec{R}=\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left( \left[ \begin{matrix} 0& -\omega _3& \omega _2\\ \omega _3& 0& -\omega _1\\ -\omega _2& \omega _1& 0\\ \end{matrix} \right] \cdot \left[ \begin{array}{c} r_1\\ r_2\\ r_3\\ \end{array} \right] \right)
ω×R=ω~?R=?I^J^K^??T??0ω3??ω2???ω3?0ω1??ω2??ω1?0????r1?r2?r3????
H
?
Σ
M
/
O
F
\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}
HΣM?/OF?表示刚体
Σ
M
\Sigma _{\mathrm{M}}
ΣM?相对于(with respect to/W.R.T)点
O
O
O 的角动量在固定坐标系
{
F
}
\left\{ F \right\}
{F}的表达。其投影分量满足:
[
H
x
H
y
H
z
]
=
[
I
x
x
w
x
P
i
F
+
I
x
y
w
y
P
i
F
+
I
x
z
w
z
P
i
F
I
y
x
w
x
P
i
F
+
I
y
y
w
y
P
i
F
+
I
y
z
w
z
P
i
F
I
z
x
w
x
P
i
F
+
I
z
y
w
y
P
i
F
+
I
z
z
w
z
P
i
F
]
=
[
I
x
x
I
x
y
I
x
z
I
y
x
I
y
y
I
y
z
I
z
x
I
z
y
I
z
z
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
=
[
I
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
\left[ \begin{array}{c} H_{\mathrm{x}}\\ H_{\mathrm{y}}\\ H_{\mathrm{z}}\\ \end{array} \right] =\left[ \begin{array}{c} I_{\mathrm{xx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{xz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{yx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{yz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ I_{\mathrm{zx}}w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zy}}w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+I_{\mathrm{zz}}w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] =\left[ I \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]
?Hx?Hy?Hz???=?Ixx?wxPi?F?+Ixy?wyPi?F?+Ixz?wzPi?F?Iyx?wxPi?F?+Iyy?wyPi?F?+Iyz?wzPi?F?Izx?wxPi?F?+Izy?wyPi?F?+Izz?wzPi?F???=?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz????wxPi?F?wyPi?F?wzPi?F???=[I]?wxPi?F?wyPi?F?wzPi?F???
矩阵
[
I
]
\left[ I \right]
[I]常被称为{惯性矩阵Inertia-matrix,有:
H
?
Σ
M
/
O
F
=
[
I
]
ω
?
F
\vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\left[ I \right] \vec{\omega}^F
HΣM?/OF?=[I]ωF,其中:
[
I
]
=
[
I
x
x
I
x
y
I
x
z
I
y
x
I
y
y
I
y
z
I
z
x
I
z
y
I
z
z
]
=
[
∑
i
N
m
P
i
?
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
?
∑
i
N
m
P
i
?
x
O
P
i
F
y
O
P
i
F
?
∑
i
N
m
P
i
?
(
x
O
P
i
F
z
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
y
O
P
i
F
x
O
P
i
F
)
∑
i
N
m
P
i
?
[
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
?
∑
i
N
m
P
i
?
(
y
O
P
i
F
z
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
z
O
P
i
F
x
O
P
i
F
)
?
∑
i
N
m
P
i
?
(
z
O
P
i
F
y
O
P
i
F
)
∑
i
N
m
P
i
?
[
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
]
\begin{split} \left[ I \right] &=\left[ \begin{matrix} I_{\mathrm{xx}}& I_{\mathrm{xy}}& I_{\mathrm{xz}}\\ I_{\mathrm{yx}}& I_{\mathrm{yy}}& I_{\mathrm{yz}}\\ I_{\mathrm{zx}}& I_{\mathrm{zy}}& I_{\mathrm{zz}}\\ \end{matrix} \right] \\ &=\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right]}\\ \end{matrix} \right] \end{split}
[I]?=?Ixx?Iyx?Izx??Ixy?Iyy?Izy??Ixz?Iyz?Izz???=?∑iN?mPi???[(yOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(yOPi?F?xOPi?F?)?∑iN?mPi???(zOPi?F?xOPi?F?)??∑iN?mPi???xOPi?F?yOPi?F?∑iN?mPi???[(xOPi?F?)2+(zOPi?F?)2]?∑iN?mPi???(zOPi?F?yOPi?F?)??∑iN?mPi???(xOPi?F?zOPi?F?)?∑iN?mPi???(yOPi?F?zOPi?F?)∑iN?mPi???[(xOPi?F?)2+(yOPi?F?)2]???
上式的实际推导过程,是进行两次转置变化,在实际过程中可以理解成,适用于矩阵与矢量相乘的张量Tensor乘法,因此也可将惯性矩阵
[
I
]
\left[ I \right]
[I]称为惯性张量Inertia Tensor。而采用基于拉格朗日恒等式证明的三个向量的双重矢积公式,可能更利于理解:
三个向量的双重矢积公式:
(
r
?
1
×
r
?
2
)
×
r
?
3
=
(
r
?
1
?
r
?
3
)
r
?
2
?
(
r
?
2
?
r
?
3
)
r
?
1
\left( \vec{r}_1\times \vec{r}_2 \right) \times \vec{r}_3=\left( \vec{r}_1\cdot \vec{r}_3 \right) \vec{r}_2-\left( \vec{r}_2\cdot \vec{r}_3 \right) \vec{r}_1
(r1?×r2?)×r3?=(r1??r3?)r2??(r2??r3?)r1?
H
?
Σ
M
/
O
F
=
∑
i
N
R
?
O
P
i
F
×
P
?
P
i
F
=
∑
i
N
m
P
i
?
R
?
O
P
i
F
×
(
ω
?
F
×
R
?
O
P
i
F
)
=
∑
i
N
m
P
i
?
[
(
R
?
O
P
i
F
?
R
?
O
P
i
F
)
ω
?
F
?
(
ω
?
F
?
R
?
O
P
i
F
)
R
?
O
P
i
F
]
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
(
[
x
O
P
i
F
y
O
P
i
F
z
O
P
i
F
]
T
[
x
O
P
i
F
y
O
P
i
F
z
O
P
i
F
]
)
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
?
(
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
T
[
x
O
P
i
F
y
O
P
i
F
z
O
P
i
F
]
)
[
x
O
P
i
F
y
O
P
i
F
z
O
P
i
F
]
]
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
[
(
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
)
w
x
P
i
F
(
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
)
w
y
P
i
F
(
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
)
w
z
P
i
F
]
?
[
(
w
x
P
i
F
x
O
P
i
F
+
w
y
P
i
F
y
O
P
i
F
+
w
z
P
i
F
z
O
P
i
F
)
x
O
P
i
F
(
w
x
P
i
F
x
O
P
i
F
+
w
y
P
i
F
y
O
P
i
F
+
w
z
P
i
F
z
O
P
i
F
)
y
O
P
i
F
(
w
x
P
i
F
x
O
P
i
F
+
w
y
P
i
F
y
O
P
i
F
+
w
z
P
i
F
z
O
P
i
F
)
z
O
P
i
F
]
]
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
w
x
P
i
F
?
(
x
O
P
i
F
y
O
P
i
F
)
w
y
P
i
F
?
(
x
O
P
i
F
z
O
P
i
F
)
w
z
P
i
F
?
(
y
O
P
i
F
x
O
P
i
F
)
w
x
P
i
F
+
[
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
]
w
y
P
i
F
?
(
y
O
P
i
F
z
O
P
i
F
)
w
z
P
i
F
?
(
z
O
P
i
F
x
O
P
i
F
)
w
x
P
i
F
?
(
z
O
P
i
F
y
O
P
i
F
)
w
y
P
i
F
+
[
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
w
z
P
i
F
]
=
∑
i
N
m
P
i
?
[
I
^
J
^
K
^
]
T
[
(
y
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
?
x
O
P
i
F
y
O
P
i
F
?
x
O
P
i
F
z
O
P
i
F
?
y
O
P
i
F
x
O
P
i
F
(
x
O
P
i
F
)
2
+
(
z
O
P
i
F
)
2
?
y
O
P
i
F
z
O
P
i
F
?
z
O
P
i
F
x
O
P
i
F
?
z
O
P
i
F
y
O
P
i
F
(
x
O
P
i
F
)
2
+
(
y
O
P
i
F
)
2
]
[
w
x
P
i
F
w
y
P
i
F
w
z
P
i
F
]
\begin{split} \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}&=\sum_i^N{\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{P}_{\mathrm{P}_{\mathrm{i}}}^{F}}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{\omega}^F-\left( \vec{\omega}^F\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left( \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left( \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right) \left[ \begin{array}{c} x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \left[ \begin{array}{c} \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ \left( \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] -\left[ \begin{array}{c} \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) x_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) y_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \left( w_{\mathrm{x}_{\mathrm{Pi}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{y}_{\mathrm{Pi}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}+w_{\mathrm{z}_{\mathrm{Pi}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ \end{array} \right] \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \left[ \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{y}_{\mathrm{Pi}}}^{F}-\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ -\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{x}_{\mathrm{Pi}}}^{F}-\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) w_{\mathrm{y}_{\mathrm{Pi}}}^{F}+\left[ \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2 \right] w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] ^{\mathrm{T}}}\left[ \begin{matrix} \left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& -x_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -y_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( z_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2& -y_{\mathrm{OP}_{\mathrm{i}}}^{F}z_{\mathrm{OP}_{\mathrm{i}}}^{F}\\ -z_{\mathrm{OP}_{\mathrm{i}}}^{F}x_{\mathrm{OP}_{\mathrm{i}}}^{F}& -z_{\mathrm{OP}_{\mathrm{i}}}^{F}y_{\mathrm{OP}_{\mathrm{i}}}^{F}& \left( x_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2+\left( y_{\mathrm{OP}_{\mathrm{i}}}^{F} \right) ^2\\ \end{matrix} \right] \left[ \begin{array}{c} w_{\mathrm{x}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{y}_{\mathrm{Pi}}}^{F}\\ w_{\mathrm{z}_{\mathrm{Pi}}}^{F}\\ \end{array} \right] \end{split}
HΣM?/OF??=i∑N?ROPi?F?×PPi?F?=i∑N?mPi???ROPi?F?×(ωF×ROPi?F?)=i∑N?mPi???[(ROPi?F??ROPi?F?)ωF?(ωF?ROPi?F?)ROPi?F?]=i∑N?mPi????I^J^K^??T???xOPi?F?yOPi?F?zOPi?F???T?xOPi?F?yOPi?F?zOPi?F?????wxPi?F?wyPi?F?wzPi?F??????wxPi?F?wyPi?F?wzPi?F???T?xOPi?F?yOPi?F?zOPi?F?????xOPi?F?yOPi?F?zOPi?F????=i∑N?mPi????I^J^K^??T??((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wxPi?F?((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wyPi?F?((xOPi?F?)2+(yOPi?F?)2+(zOPi?F?)2)wzPi?F?????(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)xOPi?F?(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)yOPi?F?(wxPi?F?xOPi?F?+wyPi?F?yOPi?F?+wzPi?F?zOPi?F?)zOPi?F????=i∑N?mPi????I^J^K^??T?[(yOPi?F?)2+(zOPi?F?)2]wxPi?F??(xOPi?F?yOPi?F?)wyPi?F??(xOPi?F?zOPi?F?)wzPi?F??(yOPi?F?xOPi?F?)wxPi?F?+[(xOPi?F?)2+(zOPi?F?)2]wyPi?F??(yOPi?F?zOPi?F?)wzPi?F??(zOPi?F?xOPi?F?)wxPi?F??(zOPi?F?yOPi?F?)wyPi?F?+[(xOPi?F?)2+(yOPi?F?)2]wzPi?F???=i∑N?mPi????I^J^K^??T?(yOPi?F?)2+(zOPi?F?)2?yOPi?F?xOPi?F??zOPi?F?xOPi?F???xOPi?F?yOPi?F?(xOPi?F?)2+(zOPi?F?)2?zOPi?F?yOPi?F???xOPi?F?zOPi?F??yOPi?F?zOPi?F?(xOPi?F?)2+(yOPi?F?)2???wxPi?F?wyPi?F?wzPi?F????