- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
import sys
from datetime import datetime
print("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.1 打印
classeNames
列表,显示每个文件所属的类别名称
2.2 打印归一化后的类别名称,0
或1
2.3 划分数据集,划分为训练集&测试集,torch.utils.data.DataLoader()
参数详解
2.4 检查数据集的shape
pathlib.Path()
函数将字符串类型的文件夹路径转换为pathlib.Path对象
。glob()
方法获取data_dir
路径下的所有文件路径,并以列表形式存储在data_paths
中。split()
函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classNames
中classNames
列表,显示每个文件所属的类别名称。import os,PIL,random,pathlib
print("------------2.1 打印classeNames列表,显示每个文件所属的类别名称------------")
total_datadir= './4-data/'
data_dir = pathlib.Path(total_datadir)
data_paths = list(total_datadir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print("classNames: ", classNames)
print("------------2.2 打印归一化后的类别名称,0或1------------")
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print("total_data: ", total_data)
print("total_data.class_to_idx: ", total_data.class_to_idx)
print("------------2.3 划分数据集,划分为训练集&测试集------------")
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print( f"train_dataset: {train_dataset}, test_dataset: {test_dataset}")
print( f"train_size: {train_size}, test_size: {test_size}")
print("------------2.4 检查数据集的shape------------")
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
print("------------3 搭建简单CNN网络------------")
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
4.1 设置超参数
4.2 编写训练函数
4.3 编写测试函数
4.4 开始正式训练,epochs==20
print("------------4.1 设置超参数------------")
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
print("------------4.2 编写训练函数------------")
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
print("------------4.3 编写测试函数------------")
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
print("------------4.4 开始正式训练,epochs==20------------")
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
5.1 Loss与Accuracy图
5.2 指定图片进行预测
5.3 保存并加载模型
print("------------5.1 Loss与Accuracy图------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
print("------------5.2 指定图片进行预测------------")
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg',
model=model,
transform=train_transforms,
classes=classes)
print("------------5.3 保存并加载模型------------")
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
torch.utils.data.DataLoader()
参数详解
torch.utils.data.DataLoader
是PyTorch
中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader
构造函数接受多个参数,下面是一些常用的参数及其解释:
dataset(必需参数)
:这是你的数据集对象,通常是torch.utils.data.Dataset
的子类,它包含了你的数据样本。batch_size(可选参数)
:指定每个小批次中包含的样本数。默认值为1
。shuffle(可选参数)
:如果设置为True
,则在每个epoch
开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为False
。num_workers(可选参数)
:用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加>快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。pin_memory(可选参数)
:如果设置为True
,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False。drop_last(可选参数)
:如果设置为True
,则在最后一个小批次可能包含样本数小于batch_size
时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False。timeout(可选参数)
:如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位),这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。worker_init_fn(可选参数)
:一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
print()
常用的三种输出格式{0}
是指输出的第0个元素,同理{1}
为第1个元素,{2}
为第2个… 可以不按顺序排列print( "Hello {0}, I'm {2}, I,m {1} year old".format("world", age, name) )
print( "I am %s, today is %d year"%(name, year) )
f
字符串,{}
中为元素,是.format
的简化形式print( f"Today is {year}")
训练结果如下:
训练结果表明:修改网络结构之后,test_accuracy反而从85.3%降低到82.5%,说明此次修改结构不能提升test_accuracy的值。
训练结果表明:与6.2.1的修改方法相比,test_accuracy从82.5%提升到84.4%。