Alnet网络分析与demo实例

发布时间:2023年12月24日

参考自?

数据集下载

http://download.tensorflow.org/example_images/flower_photos.tgz

包含 5 中类型的花,每种类型有600~900张图像不等。

训练集与测试集划分

由于此数据集不像 CIFAR10 那样下载时就划分好了训练集和测试集,因此需要自己划分。具体操作可以看b站那个up 的视频,这里不再赘述

AlexNet详解

重点关注它和上一个模型不一样的地方

1.首次用GPU进行加速训练,上图上下两部分是完全一样的,这是因为用了两块GPU加速训练

2.使用了Relu函数

3.用了Dropout随即失活部分神经元 以减少过拟合

具体网络分析:

Conv1

输入:224*224*3

卷积:11*11*3? ? 48个

  • padding = [1, 2] (左上围加半圈0,右下围加2倍的半圈0
  • stride = 4

输出:(224-11+3)/4+1 = 55? ?55*55*48

Maxpool1

输入:55*55*48

池化层:

  • kernel_size = 3
  • padding = 0
  • stride = 2

输出:(55-3)/2+1 = 27? 27*27*48

Conv2

输入:27*27*48

卷积:5*5*48? 128个

  • padding = [2, 2]
  • stride = 1

输出:(27-5+4)/1+1 = 27? ? 27*27*128

Maxpool2

输入:27*27*128

  • 池化层:(只改变尺寸,不改变深度channel)
    • kernel_size = 3
    • padding = 0
    • stride = 2

输出:13*13*128

Conv3

输入:13*13*128

  • 卷积层:
    • 3*3 192个
    • padding = [1, 1]
    • stride = 1

输出:13*13*192

Conv4

输入:13*13*192

  • 卷积层:
    • 3*3 192个
    • padding = [1, 1]
    • stride = 1

输出: 13*13**192

Conv5

输入:13*13*192

  • 卷积层:
    • 3*3*128
    • padding = [1, 1]
    • stride = 1

输出:13*13*128

Maxpool3

输入:13*13*128

  • 池化层:
    • kernel_size = 3
    • padding = 0
    • stride = 2

输出:6*6*128

FC1、FC2、FC3

Maxpool3 → (6*6*256) → FC1 → 2048 → FC2 → 2048 → FC3 → 1000

总结

分析可以发现,除 Conv1 外,AlexNet 的其余卷积层都是在改变特征矩阵的深度,而池化层则只改变(减小)其尺寸。

构建模型;

import torch.nn as nn
import torch

class AlexNet(nn.Module):
    def __init__(self, num_classes=1000, init_weights=False):
        super(AlexNet, self).__init__()
        # 用nn.Sequential()将网络打包成一个模块,精简代码
        self.features = nn.Sequential(   # 卷积层提取图像特征
            nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2),  # input[3, 224, 224]  output[48, 55, 55]
            nn.ReLU(inplace=True), 									# 直接修改覆盖原值,节省运算内存
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[48, 27, 27]
            nn.Conv2d(48, 128, kernel_size=5, padding=2),           # output[128, 27, 27]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 13, 13]
            nn.Conv2d(128, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 192, kernel_size=3, padding=1),          # output[192, 13, 13]
            nn.ReLU(inplace=True),
            nn.Conv2d(192, 128, kernel_size=3, padding=1),          # output[128, 13, 13]
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),                  # output[128, 6, 6]
        )
        self.classifier = nn.Sequential(   # 全连接层对图像分类
            nn.Dropout(p=0.5),			   # Dropout 随机失活神经元,默认比例为0.5
            nn.Linear(128 * 6 * 6, 2048),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(2048, 2048),
            nn.ReLU(inplace=True),
            nn.Linear(2048, num_classes),
        )
        if init_weights:
            self._initialize_weights()
            
	# 前向传播过程
    def forward(self, x):
        x = self.features(x)
        x = torch.flatten(x, start_dim=1)	# 展平后再传入全连接层
        x = self.classifier(x)
        return x
        
	# 网络权重初始化,实际上 pytorch 在构建网络时会自动初始化权重
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):                            # 若是卷积层
                nn.init.kaiming_normal_(m.weight, mode='fan_out',   # 用(何)kaiming_normal_法初始化权重
                                        nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)                    # 初始化偏重为0
            elif isinstance(m, nn.Linear):            # 若是全连接层
                nn.init.normal_(m.weight, 0, 0.01)    # 正态分布初始化
                nn.init.constant_(m.bias, 0)          # 初始化偏重为0

Dropout? :? 发现都有具体的api 想具体研究的可以去看看它的函数是怎么写的

数据预处理 - 图像增强

需要注意的是,对训练集的预处理,多了随机裁剪和水平翻转这两个步骤。可以起到扩充数据集的作用,增强模型泛化能力

data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),       # 随机裁剪,再缩放成 224×224
                                 transforms.RandomHorizontalFlip(p=0.5),  # 水平方向随机翻转,概率为 0.5, 即一半的概率翻转, 一半的概率不翻转
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),

    "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

训练:

import torch
from model import AlexNet
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json

# 预处理
data_transform = transforms.Compose(
    [transforms.Resize((224, 224)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# load image
img = Image.open("蒲公英.jpg")
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)

# read class_indict
try:
    json_file = open('./class_indices.json', 'r')
    class_indict = json.load(json_file)
except Exception as e:
    print(e)
    exit(-1)

# create model
model = AlexNet(num_classes=5)
# load model weights
model_weight_path = "./AlexNet.pth"
model.load_state_dict(torch.load(model_weight_path))

# 关闭 Dropout
model.eval()
with torch.no_grad():
    # predict class
    output = torch.squeeze(model(img))     # 将输出压缩,即压缩掉 batch 这个维度
    predict = torch.softmax(output, dim=0)
    predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

预测:

import torch
from model import AlexNet
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json

# 预处理
data_transform = transforms.Compose(
    [transforms.Resize((224, 224)),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# load image
img = Image.open("蒲公英.jpg")
plt.imshow(img)
# [N, C, H, W]
img = data_transform(img)
# expand batch dimension
img = torch.unsqueeze(img, dim=0)

# read class_indict
try:
    json_file = open('./class_indices.json', 'r')
    class_indict = json.load(json_file)
except Exception as e:
    print(e)
    exit(-1)

# create model
model = AlexNet(num_classes=5)
# load model weights
model_weight_path = "./AlexNet.pth"
model.load_state_dict(torch.load(model_weight_path))

# 关闭 Dropout
model.eval()
with torch.no_grad():
    # predict class
    output = torch.squeeze(model(img))     # 将输出压缩,即压缩掉 batch 这个维度
    predict = torch.softmax(output, dim=0)
    predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())
plt.show()

打印出预测的标签以及概率值:

dandelion 0.7221569418907166

文章来源:https://blog.csdn.net/m0_60921016/article/details/135178757
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。