B-TREE(B-树)

发布时间:2024年01月12日

B-TREE

B-tree 又叫平衡多路查找树。一棵 m 阶的 B-tree (m 叉树)的特性如下(其中 ceil(x)是一个取上限的函数):

  1. 树中每个结点至多有 m 个孩子;

  2. 除根结点和叶子结点外,其它每个结点至少有有 ceil(m / 2)个孩子;

  3. 若根结点不是叶子结点,则至少有 2 个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);

  4. 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部结点或查询失败的结点,实际上这些结点不存在,指向这些结点的指针都为 null);

  5. 每个非终端结点中包含有 n 个关键字信息: (n,P0,K1,P1,K2,P2,…,Kn,Pn)。其中:

a) Ki (i=1…n)为关键字,且关键字按顺序排序 K(i-1)< Ki。

b) Pi 为指向子树根的接点,且指针 P(i-1)指向子树种所有结点的关键字均小于 Ki,但都大于 K(i-1)。

c) 关键字的个数 n 必须满足: ceil(m / 2)-1 <= n <= m-1

image-20240112212316652

一棵 m 阶的 B+tree 和 m 阶的 B-tree 的差异在于:

1.有 n 棵子树的结点中含有 n 个关键字; (B-tree 是 n 棵子树有 n-1 个关键字)

2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。 (B-tree 的叶子节点并没有包括全部需要查找的信息)

3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。

(B-tree 的非终节点也包含需要查找的有效信息)

image-20240112212334841

文章来源:https://blog.csdn.net/qq_24428851/article/details/135562195
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。