import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse
classes = ['carpetweed', 'morningglory', 'palmer_amaranth']
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', default='/home/test/images',type=str, help="path of images")
parser.add_argument('--label_path', default='/home/test/labels',type=str, help="path of labels .txt")
parser.add_argument('--save_path', type=str,default='/home/rendoudou/datasets/CottonWeedDet3/data.json', help="if not split the dataset, give a path to a json file")
arg = parser.parse_args()
def yolo2coco(arg):
print("Loading data from ", arg.image_path, arg.label_path)
assert os.path.exists(arg.image_path)
assert os.path.exists(arg.label_path)
originImagesDir = arg.image_path
originLabelsDir = arg.label_path
indexes = os.listdir(originImagesDir)
dataset = {'categories': [], 'annotations': [], 'images': []}
for i, cls in enumerate(classes, 0):
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
ann_id_cnt = 0
for k, index in enumerate(tqdm(indexes)):
txtFile = f'{index[:index.rfind(".")]}.txt'
stem = index[:index.rfind(".")]
try:
im = cv2.imread(os.path.join(originImagesDir, index))
height, width, _ = im.shape
except Exception as e:
print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
continue
dataset['images'].append({'file_name': index,
'id': stem,
'width': width,
'height': height})
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
labelList = fr.readlines()
for label in labelList:
label = label.strip().split()
x = float(label[1])
y = float(label[2])
w = float(label[3])
h = float(label[4])
H, W, _ = im.shape
x1 = (x - w / 2) * W
y1 = (y - h / 2) * H
x2 = (x + w / 2) * W
y2 = (y + h / 2) * H
cls_id = int(label[0])
width = max(0, x2 - x1)
height = max(0, y2 - y1)
dataset['annotations'].append({
'area': width * height,
'bbox': [x1, y1, width, height],
'category_id': cls_id,
'id': ann_id_cnt,
'image_id': stem,
'iscrowd': 0,
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
})
ann_id_cnt += 1
with open(arg.save_path, 'w') as f:
json.dump(dataset, f)
print('Save annotation to {}'.format(arg.save_path))
if __name__ == "__main__":
yolo2coco(arg)