常常有人问,新的因子/策略从哪里来?今天的笔记或许能启发你的思路。
从1932年起,研究人员就注意到以9结尾的价格(比如$3.99),在消费者的认知中,要远远小于邻近的整数价格($4.00)。后来这一效应被称为 left-digit effect。在证券交易中,类似的情况一样存在,不过它的表现形式是整数关口压力。
关于 Left-digit effect 是否真实存在,以及如何解释和运用,经济学家/心理学家们一直研究到现在。
我看到的最近的研究直到 2023 年 2 月,John A. List(来自鼎鼎大名的芝加哥大学经济系) 等人对 Lyft 的定价体系进行了研究(《Left-Digit Bias at Lyft》),指出如果他们利用 left-digit dias 来进行定价的话,大约每年可以增加 1.6 亿美元的利润。
来自康纳尔的 Manoj Thomas 和来自纽约大学的 Vicki Morwitz 在 2005 年的《消费者研究杂志》上,发表了《Penny Wise and Pound Foolish: The Left-Digit Effect in Price Cognition》(小事聪明,大事愚蠢:价格认知中的左数效应》,被引用 300 余次,应该是这个领域比较有影响力的文献了,对这一现象进行了建模研究,确认了这一现象存在,并解释了与之相关的认知现象。
我们更关注这一现象及其伴生现象在证券交易中的表现。
1991 年, 南加州大学的 Lawrence Harris 就研究了证券交易中的类似现象(《Stock Price Clustering and Discreteness》),但他是从交易价格的聚类与离散的角度来进行分析和立论的。
他的结论是,股票价格聚集在整数分数上。价格水平和波动增加时,价格簇的个数就会增加。不过,当时美股交易的最小单位是 1/8 美金,从 2001年1月29日起,纽交所取消了之前的 1/8,1/16 交易限制,全部改为十进制小数。所以,关于股票价格聚集的研究现在来看,就应该有了新的结论。
在证券交易中,价格定价机制与零售不太一样。后者要充分利用左数效应,让消费者有占了便宜的感觉。但证券价格定价更类似于房地产这种一货一价的交易,它的价格取决于双方谈判。
谈判的双方地位对等,并且由于认知原因,于是都倾向于使用整数价格。比如,一幢房子的主体价格,定在 500 万是合适的,510 万也是合适的,但如果要定为 513.2 万元,反倒会导致双方在这个价格细节上进行过多的纠缠,导致更难成交。
在证券交易中也是如此。交易者更希望以整数买入股票,再以整数卖出,这样更方便记忆和计算利润。如此以来,由于在整数关口可能聚集大量的委单,因而它就有了压力和支撑的作用。
在 A 股,指数上会有一些著名的整数关口,比如 3000 点;我们会说 A 股万年的 3000 点,即使实际上 A 股的波动中枢可能是 31xx 点或者 29xx 点,我们仍然会这么说。
在这个点位上下,每隔 100 点都是一个大的整数压力/支撑位。如果在这个节点上遇到其它技术指标共振,那么压力/支撑成立的可能性就更大。一旦得到确认,后续趋势也会大一些、久一些。
在个股上,20 元以下的个股,每个以 1 元为结尾的数字都显然是整数关口,此外在一些低价股上,每个以 0.1 元结尾的数字都是整数产口。对百元股来说,则可能要以 10 元为单位,才能构成整数关口。这方面我们还需要时间去做一些实证研究。
这是最近读到的一篇论文,运用光折射原理来分析股价走势在整数产口的行为,脑洞比较大。不过研究确实也要持有开放的心态,才容易有意想不到的结果。
首先我们回顾一下光在两种不同密度的物质中传播时的行为。当光在接触到两种介质的交界表面时,就会发生部分反射、部分折身的现象。
如果入射角度合适,就会穿过介质,发生折射 – 这可以对应到股价运行到某个区域后,突破了该区间,并且改变了角度;也可能发生完全反射 – 对应着股价无法穿越该区间,导致反弹。
这笔文章把整数关口当成两种不同环境的交界界面(其实更广义来看,这也是密集成交区的一种),然后运用光折射原理,计算出入射角、折射角和折射率。
以育碧为例:
育碧在10月26日达到10元整数关口。相关参数定义如下: