提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
二叉堆(Binary Heap)没什么神秘,性质比二叉搜索树 BST 还简单。其主要操作就两个,sink(下沉)和 swim(上浮),用以维护二叉堆的性质。其主要应用有两个,首先是一种排序方法「堆排序」,第二是一种很有用的数据结构「优先级队列」
public class MaxPQ
<Key extends Comparable<Key>> {
// 存储元素的数组
private Key[] pq;
// 当前 Priority Queue 中的元素个数
private int size = 0;
public MaxPQ(int cap) {
// 索引 0 不用,所以多分配一个空间
pq = (Key[]) new Comparable[cap + 1];
}
/* 返回当前队列中最大元素 */
public Key max() {
return pq[1];
}
/* 插入元素 e */
public void insert(Key e) {...}
/* 删除并返回当前队列中最大元素 */
public Key delMax() {...}
/* 上浮第 x 个元素,以维护最大堆性质 */
private void swim(int x) {...}
/* 下沉第 x 个元素,以维护最大堆性质 */
private void sink(int x) {...}
/* 交换数组的两个元素 */
private void swap(int i, int j) {
Key temp = pq[i];
pq[i] = pq[j];
pq[j] = temp;
}
/* pq[i] 是否比 pq[j] 小? */
private boolean less(int i, int j) {
return pq[i].compareTo(pq[j]) < 0;
}
/* 还有 left, right, parent 三个方法 */
public class MaxPQ <Key extends Comparable<Key>> {
// 为了节约篇幅,省略上文给出的代码部分...
private void swim(int x) {
// 如果浮到堆顶,就不能再上浮了
while (x > 1 && less(parent(x), x)) {
// 如果第 x 个元素比上层大
// 将 x 换上去
swap(parent(x), x);
x = parent(x);
}
}
public class MaxPQ <Key extends Comparable<Key>> {
// 为了节约篇幅,省略上文给出的代码部分...
private void sink(int x) {
// 如果沉到堆底,就沉不下去了
while (left(x) <= size) {
// 先假设左边节点较大
int max = left(x);
// 如果右边节点存在,比一下大小
if (right(x) <= size && less(max, right(x)))
max = right(x);
// 结点 x 比俩孩子都大,就不必下沉了
if (less(max, x)) break;
// 否则,不符合最大堆的结构,下沉 x 结点
swap(x, max);
x = max;
}
}
public class MaxPQ <Key extends Comparable<Key>> {
// 为了节约篇幅,省略上文给出的代码部分...
public void insert(Key e) {
size++;
// 先把新元素加到最后
pq[size] = e;
// 然后让它上浮到正确的位置
swim(size);
}
public class MaxPQ <Key extends Comparable<Key>> {
// 为了节约篇幅,省略上文给出的代码部分...
public Key delMax() {
// 最大堆的堆顶就是最大元素
Key max = pq[1];
// 把这个最大元素换到最后,删除之
swap(1, size);
pq[size] = null;
size--;
// 让 pq[1] 下沉到正确位置
sink(1);
return max;
}
}
}
}
}
}