C# Onnx yolov8 building segmentation

发布时间:2023年12月22日

目录

效果

模型信息

项目

代码

下载


C# Onnx yolov8 building segmentation

效果

模型信息

Model Properties
-------------------------
date:2023-12-22T10:51:07.627471
author:Ultralytics
task:segment
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'Building'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 37, 8400]
name:output1
tensor:Float[1, 32, 160, 160]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
? ? public partial class Form1 : Form
? ? {
? ? ? ? public Form1()
? ? ? ? {
? ? ? ? ? ? InitializeComponent();
? ? ? ? }

? ? ? ? string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
? ? ? ? string image_path = "";
? ? ? ? string startupPath;
? ? ? ? string classer_path;
? ? ? ? DateTime dt1 = DateTime.Now;
? ? ? ? DateTime dt2 = DateTime.Now;
? ? ? ? string model_path;
? ? ? ? Mat image;
? ? ? ? SegmentationResult result_pro;
? ? ? ? Mat result_image;

? ? ? ? SessionOptions options;
? ? ? ? InferenceSession onnx_session;
? ? ? ? Tensor<float> input_tensor;
? ? ? ? List<NamedOnnxValue> input_container;
? ? ? ? IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
? ? ? ? DisposableNamedOnnxValue[] results_onnxvalue;

? ? ? ? Tensor<float> result_tensors_det;
? ? ? ? Tensor<float> result_tensors_proto;

? ? ? ? private void button1_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? OpenFileDialog ofd = new OpenFileDialog();
? ? ? ? ? ? ofd.Filter = fileFilter;
? ? ? ? ? ? if (ofd.ShowDialog() != DialogResult.OK) return;
? ? ? ? ? ? pictureBox1.Image = null;
? ? ? ? ? ? image_path = ofd.FileName;
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
? ? ? ? ? ? textBox1.Text = "";
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? }

? ? ? ? private void button2_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? if (image_path == "")
? ? ? ? ? ? {
? ? ? ? ? ? ? ? return;
? ? ? ? ? ? }

? ? ? ? ? ? // 配置图片数据
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? ? ? int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
? ? ? ? ? ? Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
? ? ? ? ? ? Rect roi = new Rect(0, 0, image.Cols, image.Rows);
? ? ? ? ? ? image.CopyTo(new Mat(max_image, roi));

? ? ? ? ? ? float[] det_result_array = new float[8400 * 37];
? ? ? ? ? ? float[] proto_result_array = new float[32 * 160 * 160];
? ? ? ? ? ? float[] factors = new float[4];
? ? ? ? ? ? factors[0] = factors[1] = (float)(max_image_length / 640.0);
? ? ? ? ? ? factors[2] = image.Rows;
? ? ? ? ? ? factors[3] = image.Cols;

? ? ? ? ? ? // 将图片转为RGB通道
? ? ? ? ? ? Mat image_rgb = new Mat();
? ? ? ? ? ? Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
? ? ? ? ? ? Mat resize_image = new Mat();
? ? ? ? ? ? Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

? ? ? ? ? ? // 输入Tensor
? ? ? ? ? ? for (int y = 0; y < resize_image.Height; y++)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? for (int x = 0; x < resize_image.Width; x++)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
? ? ? ? ? ? ? ? ? ? input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
? ? ? ? ? ? ? ? ? ? input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? }

? ? ? ? ? ? //将 input_tensor 放入一个输入参数的容器,并指定名称
? ? ? ? ? ? input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

? ? ? ? ? ? dt1 = DateTime.Now;
? ? ? ? ? ? //运行 Inference 并获取结果
? ? ? ? ? ? result_infer = onnx_session.Run(input_container);

? ? ? ? ? ? dt2 = DateTime.Now;

? ? ? ? ? ? // 将输出结果转为DisposableNamedOnnxValue数组
? ? ? ? ? ? results_onnxvalue = result_infer.ToArray();

? ? ? ? ? ? // 读取第一个节点输出并转为Tensor数据
? ? ? ? ? ? result_tensors_det = results_onnxvalue[0].AsTensor<float>();
? ? ? ? ? ? result_tensors_proto = results_onnxvalue[1].AsTensor<float>();

? ? ? ? ? ? det_result_array = result_tensors_det.ToArray();
? ? ? ? ? ? proto_result_array = result_tensors_proto.ToArray();

? ? ? ? ? ? resize_image.Dispose();
? ? ? ? ? ? image_rgb.Dispose();

? ? ? ? ? ? result_pro = new SegmentationResult(classer_path, factors);
? ? ? ? ? ? result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());

? ? ? ? ? ? if (!result_image.Empty())
? ? ? ? ? ? {
? ? ? ? ? ? ? ? pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
? ? ? ? ? ? ? ? textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
? ? ? ? ? ? }
? ? ? ? ? ? else
? ? ? ? ? ? {
? ? ? ? ? ? ? ? textBox1.Text = "无信息";
? ? ? ? ? ? }
? ? ? ? }

? ? ? ? private void Form1_Load(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? startupPath = System.Windows.Forms.Application.StartupPath;
? ? ? ? ? ??
? ? ? ? ? ? model_path = "model//yolov8-building-segmentation.onnx";
? ? ? ? ? ? classer_path = "model//lable.txt";

? ? ? ? ? ? // 创建输出会话,用于输出模型读取信息
? ? ? ? ? ? options = new SessionOptions();
? ? ? ? ? ? options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
? ? ? ? ? ? // 设置为CPU上运行
? ? ? ? ? ? options.AppendExecutionProvider_CPU(0);

? ? ? ? ? ? // 创建推理模型类,读取本地模型文件
? ? ? ? ? ? onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

? ? ? ? ? ? // 输入Tensor
? ? ? ? ? ? input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

? ? ? ? ? ? // 创建输入容器
? ? ? ? ? ? input_container = new List<NamedOnnxValue>();

? ? ? ? ? ? image_path = "test_img\\2.jpg";
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);

? ? ? ? }
? ? }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        SegmentationResult result_pro;
        Mat result_image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors_det;
        Tensor<float> result_tensors_proto;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            // 配置图片数据
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] det_result_array = new float[8400 * 37];
            float[] proto_result_array = new float[32 * 160 * 160];
            float[] factors = new float[4];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);
            factors[2] = image.Rows;
            factors[3] = image.Cols;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);

            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors_det = results_onnxvalue[0].AsTensor<float>();
            result_tensors_proto = results_onnxvalue[1].AsTensor<float>();

            det_result_array = result_tensors_det.ToArray();
            proto_result_array = result_tensors_proto.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new SegmentationResult(classer_path, factors);
            result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            
            model_path = "model//yolov8-building-segmentation.onnx";
            classer_path = "model//lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            // 设置为CPU上运行
            options.AppendExecutionProvider_CPU(0);

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img\\2.jpg";
            image = new Mat(image_path);
            pictureBox1.Image = new Bitmap(image_path);

        }
    }
}

下载

源码下载

文章来源:https://blog.csdn.net/lw112190/article/details/135151894
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。