其实T3最有意思, T4很典,是一道二分+最短路径经典套路。
T3 如果尝试 增量差值最小 的最大梯度去贪心的话,会失败,需要切换思路。
如果横竖差值最小的话
两者要么相等,要么差一
令 e1 = n / ((k + 1)/2+1), e2 = n / (k/2 + 1)
则 s = e1 * e2
这样很好的兼顾了k为奇偶的情况
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int k = sc.nextInt();
double e1 = n * 1.0 / ((k + 1)/2 + 1);
double e2 = n * 1.0 / (k/2 + 1);
double s = e1 * e2;
System.out.printf("%.2f\n", s);
}
}
这题字符串和操作次数较小,然后可以暴力模拟
如果操作数很多的话,可能需要借助数据结构来维护增量
因为这里面有明显的区间操作.
import java.io.BufferedInputStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt();
int q = sc.nextInt();
char[] str = sc.next().toCharArray();
for (int i = 0; i < q; i++) {
int l = sc.nextInt() - 1, r = sc.nextInt() - 1;
int d = r - l + 1;
char[] str2 = new char[str.length + d];
// 头部
System.arraycopy(str, 0, str2, 0,l);
// 中间的double
for (int j = 0; j < d; j++) {
str2[l + j * 2] = str2[l + j * 2 + 1] = str[j + l];
}
// 尾巴
System.arraycopy(str, r + 1, str2, r + 1 + d, str.length - (r + 1));
str = str2;
}
System.out.println(new String(str));
}
}
这题很有意思,先来看一个显而易见的结论
如果核心的焦点在于, k在两者之间时,如何求解
一开始猜了一个,从收益最大(差值减少梯度)的角度去贪心,结果WA,而且得分不高
一度没辙,后面仔细分析了下,感觉可以枚举最大的没有被选中的项
如果选中某一个项为最大值,那比它小,而离的越近必然被保留,所以k的选择一定分布在前后缀.
所以思路是
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt(), k = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
Arrays.sort(arr);
if (k == 1) {
System.out.println(arr[n - 1] - arr[0]);
} else if (k == n) {
System.out.println(0);
} else {
double ans = arr[n - 1] - arr[0];
// 前后缀拆解
long[] suf = new long[n + 1];
for (int j = n - 1; j >= 0; j--) {
suf[j] = suf[j + 1] + arr[j];
}
long pre = 0;
// 假设这个元素没被选中
for (int i = 0; i < n; i++) {
if (i > k) break;
long acc = pre + suf[n + i - k];
double avg = acc * 1.0 / k;
double m1 = Math.max(avg, arr[n + i - k - 1]);
double m2 = Math.min(avg, arr[i]);
ans = Math.min(ans, m1 - m2);
pre += arr[i];
}
System.out.println(ans);
}
}
}
经典套路题
二分最大重量,然后check逻辑中跑最短路(Dijkstra)进行验证
import java.io.*;
import java.util.*;
public class Main {
static long inf = Long.MAX_VALUE / 10;
static boolean check(int n, List<int[]> []g, int limit, int h) {
long[] res = new long[n];
Arrays.fill(res, inf);
PriorityQueue<long[]> pq = new PriorityQueue<>(Comparator.comparing(x -> x[1]));
pq.offer(new long[] {0, 0});
res[0] = 0;
while (!pq.isEmpty()) {
long[] cur = pq.poll();
int u = (int)cur[0];
if (cur[1] > res[u]) continue;
for (int[] e: g[u]) {
int v = e[0];
if (e[1] >= limit && res[v] > res[u] + e[2]) {
res[v] = res[u] + e[2];
pq.offer(new long[] {v, res[v]});
}
}
}
return res[n - 1] <= h;
}
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int n = sc.nextInt(), m = sc.nextInt(), h = sc.nextInt();
// 二分
List<int[]>[]g = new List[n];
Arrays.setAll(g, x -> new ArrayList<>());
int mz = 0;
for (int i = 0; i < m; i++) {
int u = sc.nextInt() - 1, v = sc.nextInt() - 1;
int w = sc.nextInt(), d = sc.nextInt();
g[u].add(new int[] {v, w, d});
g[v].add(new int[] {u, w, d});
mz = Math.max(mz, w);
}
int l = 0, r = mz;
while (l <= r) {
int mid = l + (r - l) / 2;
if (check(n, g, mid, h)) {
l = mid + 1;
} else {
r = mid - 1;
}
}
System.out.println(r);
}
}