做一斜边为1的直角△ABC,任意旋转非
k
Π
,
k
=
N
kΠ,k=N
kΠ,k=N,补充如图,令
∠
A
B
C
=
∠
α
,
∠
C
B
F
=
∠
β
∠ABC=∠α,∠CBF=∠β
∠ABC=∠α,∠CBF=∠β
∴
∠
D
B
F
=
∠
D
B
A
+
∠
α
+
∠
β
=
90
°
,
∠
D
A
F
=
∠
D
B
A
+
∠
D
A
B
∴∠DBF=∠DBA+∠α+∠β=90°,∠DAF=∠DBA+∠DAB
∴∠DBF=∠DBA+∠α+∠β=90°,∠DAF=∠DBA+∠DAB
∵
∠
D
A
B
=
∠
α
+
∠
β
∵∠DAB=∠α+∠β
∵∠DAB=∠α+∠β
∴
∠
A
C
F
+
∠
B
C
F
=
90
°
∴∠ACF+∠BCF=90°
∴∠ACF+∠BCF=90°
∵
∠
A
C
F
=
∠
β
∵∠ACF=∠β
∵∠ACF=∠β
∴
A
B
长度为
1
∴AB长度为1
∴AB长度为1
∵
A
C
=
s
i
n
(
α
)
,
B
C
=
c
o
s
(
α
)
∵AC=sin(α),BC=cos(α)
∵AC=sin(α),BC=cos(α)
∵
B
F
=
c
o
s
(
α
)
?
c
o
s
(
β
)
,
C
F
=
c
o
s
(
α
)
?
s
i
n
(
β
)
,
A
E
=
s
i
n
(
α
)
s
i
n
(
β
)
,
C
E
=
s
i
n
(
α
)
c
o
s
(
β
)
,
B
D
=
E
F
=
s
i
n
(
α
+
β
)
,
D
A
=
c
o
s
(
α
+
β
)
∵BF=cos(α)*cos(β),CF=cos(α)*sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β)
∵BF=cos(α)?cos(β),CF=cos(α)?sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β)
∵
{
c
o
s
(
α
+
β
)
=
c
o
s
(
α
)
?
c
o
s
(
β
)
?
s
i
n
(
α
)
?
s
i
n
(
β
)
s
i
n
(
α
+
β
)
=
s
i
n
(
α
)
?
c
o
s
(
β
)
+
c
o
s
(
α
)
?
s
i
n
(
β
)
∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases}
∵{cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)?
∵
{
c
o
s
(
α
+
β
)
=
c
o
s
(
α
)
?
c
o
s
(
β
)
?
s
i
n
(
α
)
?
s
i
n
(
β
)
s
i
n
(
α
+
β
)
=
s
i
n
(
α
)
?
c
o
s
(
β
)
+
c
o
s
(
α
)
?
s
i
n
(
β
)
∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases}
∵{cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)?
对
∠
β
做取反变化
对∠β做取反变化
对∠β做取反变化
∵
{
c
o
s
(
α
+
(
?
β
)
)
=
c
o
s
(
α
)
?
c
o
s
(
β
)
?
s
i
n
(
α
)
?
(
?
s
i
n
(
β
)
)
s
i
n
(
α
+
(
?
β
)
)
=
s
i
n
(
α
)
?
c
o
s
(
β
)
+
c
o
s
(
α
)
?
(
?
s
i
n
(
β
)
)
∵\begin{cases} cos(α+(-β))=cos(α)*cos(β)-sin(α)*(-sin(β)) \\sin(α+(-β))=sin(α)*cos(β)+cos(α)*(-sin(β)) \end{cases}
∵{cos(α+(?β))=cos(α)?cos(β)?sin(α)?(?sin(β))sin(α+(?β))=sin(α)?cos(β)+cos(α)?(?sin(β))?
∵ { c o s ( α ? β ) = s i n ( α ) ? s i n ( β ) + c o s ( α ) ? s i n ( β ) s i n ( α ? β ) = s i n ( α ) ? c o s ( β ) ? c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} ∵{cos(α?β)=sin(α)?sin(β)+cos(α)?sin(β)sin(α?β)=sin(α)?cos(β)?cos(α)?sin(β)?
∵ { c o s ( α + β ) = c o s ( α ) ? c o s ( β ) ? s i n ( α ) ? s i n ( β ) s i n ( α + β ) = s i n ( α ) ? c o s ( β ) + c o s ( α ) ? s i n ( β ) c o s ( α ? β ) = s i n ( α ) ? s i n ( β ) + c o s ( α ) ? s i n ( β ) s i n ( α ? β ) = s i n ( α ) ? c o s ( β ) ? c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \\cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} ∵? ? ??cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)cos(α?β)=sin(α)?sin(β)+cos(α)?sin(β)sin(α?β)=sin(α)?cos(β)?cos(α)?sin(β)?
为什么几何推理∠β和∠α不是钝角,根据诱导公式可将钝角化为锐角。所以只推导锐角和可以等价于推导任意角和