三角函数两角和差公式推导

发布时间:2023年12月31日

一.几何推理

1.两角和公式

在这里插入图片描述

做一斜边为1的直角△ABC,任意旋转非 k Π , k = N kΠ,k=N kΠ,k=N,补充如图,令 ∠ A B C = ∠ α , ∠ C B F = ∠ β ∠ABC=∠α,∠CBF=∠β ABC=αCBF=β
∴ ∠ D B F = ∠ D B A + ∠ α + ∠ β = 90 ° , ∠ D A F = ∠ D B A + ∠ D A B ∴∠DBF=∠DBA+∠α+∠β=90°,∠DAF=∠DBA+∠DAB DBF=DBA+α+β=90°,DAF=DBA+DAB
∵ ∠ D A B = ∠ α + ∠ β ∵∠DAB=∠α+∠β DAB=α+β
∴ ∠ A C F + ∠ B C F = 90 ° ∴∠ACF+∠BCF=90° ACF+BCF=90°
∵ ∠ A C F = ∠ β ∵∠ACF=∠β ACF=β
∴ A B 长度为 1 ∴AB长度为1 AB长度为1
∵ A C = s i n ( α ) , B C = c o s ( α ) ∵AC=sin(α),BC=cos(α) AC=sin(α),BC=cos(α)
∵ B F = c o s ( α ) ? c o s ( β ) , C F = c o s ( α ) ? s i n ( β ) , A E = s i n ( α ) s i n ( β ) , C E = s i n ( α ) c o s ( β ) , B D = E F = s i n ( α + β ) , D A = c o s ( α + β ) ∵BF=cos(α)*cos(β),CF=cos(α)*sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β) BF=cos(α)?cos(β),CF=cos(α)?sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β)
∵ { c o s ( α + β ) = c o s ( α ) ? c o s ( β ) ? s i n ( α ) ? s i n ( β ) s i n ( α + β ) = s i n ( α ) ? c o s ( β ) + c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)?

2.两角差公式

∵ { c o s ( α + β ) = c o s ( α ) ? c o s ( β ) ? s i n ( α ) ? s i n ( β ) s i n ( α + β ) = s i n ( α ) ? c o s ( β ) + c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)?
对 ∠ β 做取反变化 对∠β做取反变化 β做取反变化
∵ { c o s ( α + ( ? β ) ) = c o s ( α ) ? c o s ( β ) ? s i n ( α ) ? ( ? s i n ( β ) ) s i n ( α + ( ? β ) ) = s i n ( α ) ? c o s ( β ) + c o s ( α ) ? ( ? s i n ( β ) ) ∵\begin{cases} cos(α+(-β))=cos(α)*cos(β)-sin(α)*(-sin(β)) \\sin(α+(-β))=sin(α)*cos(β)+cos(α)*(-sin(β)) \end{cases} {cos(α+(?β))=cos(α)?cos(β)?sin(α)?(?sin(β))sin(α+(?β))=sin(α)?cos(β)+cos(α)?(?sin(β))?

∵ { c o s ( α ? β ) = s i n ( α ) ? s i n ( β ) + c o s ( α ) ? s i n ( β ) s i n ( α ? β ) = s i n ( α ) ? c o s ( β ) ? c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} {cos(α?β)=sin(α)?sin(β)+cos(α)?sin(β)sin(α?β)=sin(α)?cos(β)?cos(α)?sin(β)?

3.总结

∵ { c o s ( α + β ) = c o s ( α ) ? c o s ( β ) ? s i n ( α ) ? s i n ( β ) s i n ( α + β ) = s i n ( α ) ? c o s ( β ) + c o s ( α ) ? s i n ( β ) c o s ( α ? β ) = s i n ( α ) ? s i n ( β ) + c o s ( α ) ? s i n ( β ) s i n ( α ? β ) = s i n ( α ) ? c o s ( β ) ? c o s ( α ) ? s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \\cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} ? ? ??cos(α+β)=cos(α)?cos(β)?sin(α)?sin(β)sin(α+β)=sin(α)?cos(β)+cos(α)?sin(β)cos(α?β)=sin(α)?sin(β)+cos(α)?sin(β)sin(α?β)=sin(α)?cos(β)?cos(α)?sin(β)?

4.其他

为什么几何推理∠β和∠α不是钝角,根据诱导公式可将钝角化为锐角。所以只推导锐角和可以等价于推导任意角和

文章来源:https://blog.csdn.net/tyh751734196/article/details/135317322
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。