大家还记得在第一章函数中关于指数和对数的注释吗?让我们简单的回顾一下。
简单的来说,指数函数是指将一个实数作为底数提升为指数次方的幂。
底
数
指数
底数^{指数}
底数指数
例如:
2
3
2^{3}
23是以2为底数3为指数的一个幂。
f
(
x
)
=
2
x
f(x)=2^x
f(x)=2x则是以2为底的指数函数。
为了使指数便于定义,规定其底数必须大于0且不能等于1,指数是任意实数。指数具有许多的法则和性质,可以帮助我们进行指数运算。对于任意底数 b > 0 b>0 b>0,和任意正数 x x x和 y y y:
对数是指数的逆运算。简单的来说对数是指将底数
b
b
b在幂运算中提升为真数
y
y
y的指数。
b
log
?
b
(
y
)
=
y
b^{\log_{b}{(y)}}=y
blogb?(y)=y
这个恒等式对于任意底数
b
>
0
b > 0
b>0且
b
≠
1
b \neq 1
b=1和任意真数
y
>
0
y > 0
y>0成立。要求
b
>
0
b>0
b>0是因为对数函数是指数的逆运算。如果
b
<
0
b<0
b<0则会出现未定义的情况。如当
b
=
?
1
b=-1
b=?1,
y
=
1
2
y=\frac{1}{2}
y=21?时就会出现
?
1
\sqrt{-1}
?1?,我们知道二次方根下不能为负。所以
b
>
0
b >0
b>0。要求 $y >0
是因为正数的任意次幂都为正,我们不可能将一个正数提升任意次幂得到一个负数或
0
。而要求
是因为正数的任意次幂都为正,我们不可能将一个正数提升任意次幂得到一个负数或0。而要求
是因为正数的任意次幂都为正,我们不可能将一个正数提升任意次幂得到一个负数或0。而要求b \neq 1$是因为1的任意次幂都是它自身。而
1
l
o
g
1
(
y
)
=
y
1^{log_1(y)}=y
1log1?(y)=y中的
y
y
y可能不是1,当
y
y
y不为1时,上式是不成立的。
考虑 log ? 2 8 \log_{2}{8} log2?8,它表示的是在幂运算中能够将2提升为8的x。也就是说 2 x = 8 2^x=8 2x=8,这很容易就可以解出来 x = 3 x=3 x=3。
对数是指数的逆运算,所以指数的所有法则在对数中都有对应的版本。但对数中一条换底法则在指数中没有对应的法则。对于任意底数 b > 0 b > 0 b>0且 b ≠ 1 b \neq 1 b=1,和实数 x > 0 x >0 x>0与 y > 0 y >0 y>0:
对于任意的介于0到1之间的b,我们有:$\log_{b}(y)=-\log_{\frac{1}{b}}(y) , 其中 ,其中 ,其中\frac{1}{b} > 0$。这是因为在指数中我们有 b ? x = ( 1 b ) x b^{-x}=(\frac{1}{b})^x b?x=(b1?)x。
通过换底公式对于同一个数,不同底数的对数之间的关系是线性的,即它们是对方的常数倍。因此,不同底数的对数函数的图像在形状上是相似的,只是在垂直方向上进行了平移。这种平移的大小取决于底数的选择。
指数也具有一个换底公式:
b
x
=
c
x
l
o
g
c
(
b
)
b^x=c^{xlog_c(b)}
bx=cxlogc?(b)
但是因为它涉及到对数所以通常不会被列入指数法则中。
形如 f ( x ) = b x f(x)=b^x f(x)=bx的函数成为指数函数。其中$b >0 且 且 且 b \neq 1 。它的定义域为整体实数集 。它的定义域为整体实数集 。它的定义域为整体实数集R , 值域为 ,值域为 ,值域为(0,+\infty)$。
对于形如 f ( x ) = b x f(x) = b^x f(x)=bx 的指数函数,当 b > 1 b > 1 b>1 时,函数是增函数,其图像在第一、二象限;当 0 < b < 1 0 < b < 1 0<b<1 时,函数是减函数,其图像在第二、三象限。无论 b b b 的具体值是多少,只要满足 b > 0 b > 0 b>0 且 b ≠ 1 b \neq 1 b=1,其基本形状都是一样的,只是在垂直方向上进行了平移和缩放。
指数函数的性质决定了其图像的形状。对于任何正实数 b b b( b ≠ 1 b \neq 1 b=1),函数 f ( x ) = b x f(x) = b^x f(x)=bx 都会通过点 ( 0 , 1 ) (0, 1) (0,1),并且当 x x x 趋于负无穷时, y y y 趋于 0(如果 b > 1 b > 1 b>1)或者趋于 正无穷(如果 0 < b < 1 0 < b < 1 0<b<1;当 x x x 趋于正无穷时, y y y 也趋于正无穷(如果 b > 1 b > 1 b>1)或者趋于 0(如果 0 < b < 1 0 < b < 1 0<b<1)。这些性质决定了所有指数函数的图像在形状上都是相似的。
指数函数的图像:
从图像中我们不难看出指数函数是具有反函数 f ? 1 f^{-1} f?1的。对数是指数的逆运算,所以有 f ? 1 ( x ) = l o g b ( x ) f^{-1}(x)=log_b(x) f?1(x)=logb?(x)。 我们知道反函数与原函数关于直线 y = x y=x y=x对称。我们很容易可以画出对数函数的图像。