Latent Consistency Models (LCMs)
,图像生成速度更快、质量更好.Stable Diffusion
,进一步提出 skipping-step
技术加快收敛过程.LCMs
的微调方法.使用 empirical PF-ODE 表示模型的逆扩散过程:
d x t d t = f ( t ) x t + g 2 ( t ) 2 σ t ? θ ( x t , t ) \large \frac{\mathrm{d}x_t}{\mathrm{d}t}=f(t)x_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(x_t,t) dtdxt??=f(t)xt?+2σt?g2(t)??θ?(xt?,t)
对于 class-conditioned 扩散模型,Classifier-Free Guidance (CFG)
有效地提高了生成样本的质量,用
ω
\omega
ω表示 CFG
系数,原始的噪声预测模型可以被替换为:
? θ ^ ( z t , ω , c , t ) = ( 1 + ω ) ? θ ( z t , c , t ) ? ω ? θ ( z t , ? , t ) \large\hat{\epsilon_{\theta}}(z_t,\omega,c,t)=(1+\omega)\epsilon_{\theta}(z_t,c,t)-\omega\epsilon_{\theta}(z_t,\varnothing,t) ?θ?^?(zt?,ω,c,t)=(1+ω)?θ?(zt?,c,t)?ω?θ?(zt?,?,t)
令 F θ ( x , t ) F_{\theta}(\mathrm{x}, t) Fθ?(x,t)表示任意形式的神经网络,使用 sikp connection 可以将模型表示为:
f θ ( x , t ) = c s k i p ( t ) x + c o u t ( t ) F θ ( x , t ) \large f_{\theta}(\mathrm{x}, t)=c_{skip}(t)\mathrm{x}+c_{out}(t)F_{\theta}(\mathrm{x},t) fθ?(x,t)=cskip?(t)x+cout?(t)Fθ?(x,t)
其中边界条件为
c
s
k
i
p
(
?
)
=
1
c_{skip}(\epsilon)=1
cskip?(?)=1,
c
o
u
t
(
?
)
=
0
c_{out}(\epsilon)=0
cout?(?)=0.
损失函数为:
L C D N ( θ , θ ? ; ? ) = E [ λ ( t n ) d ( f θ ( x t n + 1 , t n + 1 ) , f θ ? ( x ^ t n ? , t n ) ] \large \mathcal{L}_{CD}^{N}(\theta, \theta^-;\phi)=\mathbb{E}\left[\lambda(t_n)d(f_{\theta}(\mathrm{x}_{t_{n+1}},t_{n+1}),f_{\theta^-}(\hat{\mathrm{x}}_{t_n}^{\phi}, t_n) \right] LCDN?(θ,θ?;?)=E[λ(tn?)d(fθ?(xtn+1??,tn+1?),fθ??(x^tn???,tn?)]
θ ? \theta^- θ?使用 EMA 更新,计算公式如下:
θ ? ← s t o p g a r d ( μ θ ? + ( 1 ? μ ) θ ) \large \theta^- \leftarrow \mathrm{stopgard}(\mu\theta^-+(1-\mu)\theta) θ?←stopgard(μθ?+(1?μ)θ)
x ^ t n ? \hat{\mathrm{x}}_{t_n}^{\phi} x^tn???是从 x t n + 1 \mathrm{x}_{t_{n+1}} xtn+1??到 x t n \mathrm{x}_{t_{n}} xtn??的估计,计算公式如下:
x ^ t n ? = x t n + 1 + ( t n ? t n + 1 ) Φ ( x t n + 1 , t n + 1 ; ? ) \large \hat{\mathrm{x}}_{t_n}^{\phi}=\mathrm{x}_{t_{n+1}} + (t_n-t_{n+1})\Phi(\mathrm{x}_{t_{n+1}}, t_{n+1};\phi) x^tn???=xtn+1??+(tn??tn+1?)Φ(xtn+1??,tn+1?;?)
针对类似 Stable Diffusion
的隐空间上的条件扩散模型,其 PF- ODE 逆过程可以表示为:
d z t d t = f ( t ) z t + g 2 ( t ) 2 σ t ? θ ( z t , c , t ) \large \frac{\mathrm{d}z_t}{\mathrm{d}t}=f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t) dtdzt??=f(t)zt?+2σt?g2(t)??θ?(zt?,c,t)
其中
z
t
z_t
zt?是图像隐向量,
c
c
c是给定的条件. 类似CM
中的做法,引入
f
θ
:
(
z
t
,
c
,
t
)
?
z
0
f_{\theta}:(z_t,c,t)\mapsto z_0
fθ?:(zt?,c,t)?z0?,将其参数化为:
f θ ( z , c , t ) = c s k i p ( t ) z + c o u t ( t ) ( z ? σ t ? ^ θ ( z , c , t ) α t ) \large f_{\theta}(z,c,t)=c_{skip}(t)z+c_{out}(t)\left(\frac{z-\sigma_t\hat{\epsilon}_{\theta}(z,c,t)}{\alpha_{t}} \right) fθ?(z,c,t)=cskip?(t)z+cout?(t)(αt?z?σt??^θ?(z,c,t)?)
具体的参数化形式由被蒸馏的扩散模型决定.
损失函数表示为:
L C D ( θ , θ ? ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , c , t n + 1 ) , f θ ? ( z ^ t n Ψ , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},c,t_n) \right] LCD?(θ,θ?;Ψ)=Ez,c,n?[d(fθ?(ztn+1??,c,tn+1?),fθ??(z^tn?Ψ?,c,tn?)]
z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tn?Ψ?为 z t n + 1 z_{t_{n+1}} ztn+1??到 z t n z_{t_{n}} ztn??的估计,计算方法如下:
z ^ t n Ψ ? z t n + 1 = ∫ t n + 1 t n ( f ( t ) z t + g 2 ( t ) 2 σ t ? θ ( z t , c , t ) ) d t ≈ Ψ ( z t n + 1 , t n + 1 , t n , c ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}=\int_{t_{n+1}}^{t_n}\left(f(t)z_t+\frac{g^2(t)}{2\sigma_t}\epsilon_{\theta}(z_t,c,t)\right)\mathrm{d}t\approx\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c) z^tn?Ψ??ztn+1??=∫tn+1?tn??(f(t)zt?+2σt?g2(t)??θ?(zt?,c,t))dt≈Ψ(ztn+1??,tn+1?,tn?,c)
使用CFG
,损失函数可以表示为:
L C D ( θ , θ ? ; Ψ ) = E z , c , n [ d ( f θ ( z t n + 1 , ω , c , t n + 1 ) , f θ ? ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+1}},\omega,c,t_{n+1}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD?(θ,θ?;Ψ)=Ez,c,n?[d(fθ?(ztn+1??,ω,c,tn+1?),fθ??(z^tn?Ψ?,ω,c,tn?)]
z ^ t n Ψ \hat{z}_{t_n}^{\Psi} z^tn?Ψ?的计算方法更新为
z ^ t n Ψ ? z t n + 1 ≈ ( 1 + ω ) Ψ ( z t n + 1 , t n + 1 , t n , c ) ? Ψ ( z t n + 1 , t n + 1 , t n , ? ) \large \hat{z}_{t_n}^{\Psi}-z_{t_{n+1}}\approx(1+\omega)\Psi(z_{t_{n+1}}, t_{n+1}, t_n, c)-\Psi(z_{t_{n+1}}, t_{n+1}, t_n, \varnothing) z^tn?Ψ??ztn+1??≈(1+ω)Ψ(ztn+1??,tn+1?,tn?,c)?Ψ(ztn+1??,tn+1?,tn?,?)
扩散模型例如Stable Diffusion
的总时间步长有
1000
1000
1000步,LCM在训练的采样需要覆盖这
1000
1000
1000步,既然相邻时间步之间的差值小,那么
f
θ
(
z
t
n
+
1
,
c
,
t
n
+
1
)
f_{\theta}(z_{t_{n+1}},c,t_{n+1})
fθ?(ztn+1??,c,tn+1?)和
f
θ
(
z
t
n
,
c
,
t
n
)
f_{\theta}(z_{t_{n}},c,t_{n})
fθ?(ztn??,c,tn?)之间的差距也小,这导致计算出来的损失小、收敛慢.
作者介绍了skipping-step
方法,原来度量时间步
t
n
+
1
t_{n+1}
tn+1?和
t
n
t_n
tn?间的差距,改为度量
t
n
+
k
t_{n+k}
tn+k?和
t
n
t_n
tn?间的差距. 至此,LCM训练的损失函数为
L C D ( θ , θ ? ; Ψ ) = E z , c , n [ d ( f θ ( z t n + k , ω , c , t n + k ) , f θ ? ( z ^ t n Ψ , ω , c , t n ) ] \large \mathcal{L}_{CD}(\theta,\theta^-;\Psi)=\mathbb{E}_{z,c,n}\left[d(f_{\theta}(z_{t_{n+k}},\omega,c,t_{n+k}),f_{\theta^-}(\hat{z}_{t_n}^{\Psi},\omega,c,t_n) \right] LCD?(θ,θ?;Ψ)=Ez,c,n?[d(fθ?(ztn+k??,ω,c,tn+k?),fθ??(z^tn?Ψ?,ω,c,tn?)]
z
^
t
n
Ψ
\hat{z}_{t_n}^{\Psi}
z^tn?Ψ?中
Ψ
(
?
,
?
,
?
,
?
)
\Psi(·,·,·,·)
Ψ(?,?,?,?)的计算方法对应跨
k
k
k步,作者分别使用了DDIM
、DPM-Solver
、DPM-Solver++
作为 PF-ODE solver,以DDIM
为例,其对应的
Ψ
(
?
,
?
,
?
,
?
)
\Psi(·,·,·,·)
Ψ(?,?,?,?)计算方法为
Ψ ( z t n + k , t n + k , t n , c ) = α t n α t n + k z t n + k ? σ t n ( σ t n + k α t n α t n + k σ t n ? 1 ) ? ^ θ ( z t n + k , c , t n + k ) ? z t n + k \large \Psi(z_{t_{n+k}}, t_{n+k}, t_n, c)=\frac{\alpha_{t_n}}{\alpha_{t_{n+k}}}z_{t_{n+k}}-\sigma_{t_n}\left(\frac{\sigma_{t_{n+k}}\alpha_{t_n}}{\alpha_{t_{n+k}}\sigma_{t_n}}-1\right)\hat{\epsilon}_{\theta}(z_{t_{n+k}},c,t_{n+k})-z_{t_{n+k}} Ψ(ztn+k??,tn+k?,tn?,c)=αtn+k??αtn???ztn+k???σtn??(αtn+k??σtn??σtn+k??αtn????1)?^θ?(ztn+k??,c,tn+k?)?ztn+k??
再加入CFG
和skipping-step
之后,LCM的训练过程用如下算法所示:
多步采样算法如下:
全量微调算法:
测试数据集使用 LAION-Aesthetic-6+ 和 LAION-Aesthetic-6.5+,teacher model 是 Stable Diffusion-v2.1.
LCM的推理步数在
1
1
1到
4
4
4步的时候效果会比其他 baseline 方法好. 因为DPM
和DPM++
算实践中很常用的 ODE Solver,正常使用时推理步数在
20
20
20以上. 所以综合速度和质量,LCM表现不错.
训练时间 32 A100 GPU Hours
原理:在原本的 Latent Diffusion Model (LDM)
中,可以使用 LoRa
训练一个额外结构附加到模型的 TextEncoder 和 Unet 中,做到模型的风格迁移. 即图中所示的
τ
′
\mathbb{\tau}'
τ′,它是原模型微调后额外结构的参数向量. LCM
的 backbone 和被它蒸馏模型的 backbone 结构是一致的,所以LCD
过程也可以视作对原模型的微调,所以也可以利用 LoRa
,在初始化 student Unet 之后,整个蒸馏过程只训练 LoRa
引入的额外结构,也就是获得
τ
L
C
M
\mathbb{\tau}_{\mathrm{LCM}}
τLCM?. 理论上可以结合
τ
′
\mathbb{\tau}'
τ′,最终做到既能加速生成,又能风格迁移.
LCD
过程仅微调 LoRa
,收敛更快,训练消耗显著降低.