目录
电能质量扰动信号数据介绍与分类-Python实现-CSDN博客
Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客
Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客
Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客
Python电能质量扰动信号分类(四)基于CNN-BiLSTM的一维信号分类模型-CSDN博客
本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN-Transformer模型对扰动信号的分类。
Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):
电能质量扰动信号数据介绍与分类-Python实现_pypower计算电网频率质量-CSDN博客
部分扰动信号类型波形图如下所示:
在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:
第一步,按照公式模型生成单一信号
单一扰动信号可视化:
第二步,导入十分类数据
import pandas as pd
import numpy as np
# 样本时长0.2s 样本步长1024 每个信号生成500个样本 噪声0DB
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1] # 训练集、验证集、测试集划分比例
# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape
第一步,定义制作数据集函数
第二步,制作数据集与分类标签
注意:输入数据维度为[64, 1, 1024], 先送入CNN网络进行1d的卷积池化,然后再把卷积池化的空间特征送入Transformer进行信号特征增强,最终送入全连接层和softmax进行分类。
100个epoch,准确率将近100%,CNN-Transformer模型分类效果良好,分类准确率高,性能优越,适当调整模型参数,可以进一步提高分类准确率。
注意调整参数:
可以适当增加 CNN层数和隐藏层维度数,微调学习率;
增加Transformer编码器层数和维度数,增加更多的 epoch (注意防止过拟合)
可以改变一维信号堆叠的形状(设置合适的长度和维度)