【python】爬取百度热搜排行榜Top50+可视化【附源码】【送数据分析书籍】

发布时间:2023年12月31日

??一、导入必要的模块:

??? 这篇博客将介绍如何使用Python编写一个爬虫程序,从斗鱼直播网站上获取图片信息并保存到本地。我们将使用requests模块发送HTTP请求和接收响应,以及os模块处理文件和目录操作。

??????? 如果出现模块报错

??????? 进入控制台输入:建议使用国内镜像源

pip install requests -i https://mirrors.aliyun.com/pypi/simple

???????? 我大致罗列了以下几种国内镜像源:

????????

清华大学
https://pypi.tuna.tsinghua.edu.cn/simple

阿里云
https://mirrors.aliyun.com/pypi/simple/

豆瓣
https://pypi.douban.com/simple/ 

百度云
https://mirror.baidu.com/pypi/simple/

中科大
https://pypi.mirrors.ustc.edu.cn/simple/

华为云
https://mirrors.huaweicloud.com/repository/pypi/simple/

腾讯云
https://mirrors.cloud.tencent.com/pypi/simple/

????

二、发送GET请求获取响应数据:

????????设置了请求头部信息,以模拟浏览器的请求,函数返回响应数据的JSON格式内容。

def get_html(url):
    header = {
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36'
    }
    response = requests.get(url=url, headers=header)
    # print(response.json())
    html = response.json()
    return html

??????? 如何获取请求头:

????????火狐浏览器:
  1. 打开目标网页并右键点击页面空白处。
  2. 选择“检查元素”选项,或按下快捷键Ctrl + Shift + C(Windows)
  3. 在开发者工具窗口中,切换到“网络”选项卡。
  4. 刷新页面以捕获所有的网络请求。
  5. 在请求列表中选择您感兴趣的请求。
  6. 在右侧的“请求标头”或“Request Headers”部分,即可找到请求头信息。

???? 将以下请求头信息复制出来即可

三、代码思路

  1. 导入所需的库:

import requests
from bs4 import BeautifulSoup
import openpyxl

requests 库用于发送HTTP请求获取网页内容。

BeautifulSoup 库用于解析HTML页面的内容。

openpyxl 库用于创建和操作Excel文件。

? ? ? ? 2.发起HTTP请求获取百度热搜页面内容:

url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content

这里使用了 requests.get() 方法发送GET请求,并将响应的内容赋值给变量 html

????????3.使用BeautifulSoup解析页面内容:

soup = BeautifulSoup(html, 'html.parser')

创建一个 BeautifulSoup 对象,并传入要解析的HTML内容和解析器类型。

????????4.提取热搜数据:

hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
 ? ?hot_searches.append(item.text)

这段代码通过调用 soup.find_all() 方法找到所有 <div> 标签,并且指定 class 属性为 'c-single-text-ellipsis' 的元素。

然后,将每个元素的文本内容添加到 hot_searches 列表中。

? ? ? ? 5.保存热搜数据到Excel:

workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'

使用 openpyxl.Workbook() 创建一个新的工作簿对象。

调用 active 属性获取当前活动的工作表对象,并将其赋值给变量 sheet

使用 title 属性给工作表命名为 'Baidu Hot Searches'

? ? ? ? 6.设置标题:

sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:Yan-英杰')

使用 cell() 方法选择要操作的单元格,其中 rowcolumn 参数分别表示行和列的索引。

将标题字符串 '百度热搜排行榜—博主:Yan-英杰' 写入选定的单元格。

????????7.写入热搜数据:

for i in range(len(hot_searches)):
 ? ?sheet.cell(row=i+2, column=1, value=hot_searches[i])

使用 range() 函数生成一个包含索引的范围,循环遍历 hot_searches 列表。

对于每个索引 i,使用 cell() 方法将对应的热搜词写入Excel文件中。

????????8.保存Excel文件:

workbook.save('百度热搜.xlsx')

使用 save() 方法将工作簿保存到指定的文件名 '百度热搜.xlsx'

????????9.输出提示信息:

print('热搜数据已保存到 百度热搜.xlsx')

在控制台输出保存成功的提示信息。

四、完整代码:

????????如果对CSDN周边以及有偿返现任务感兴趣:https://bbs.csdn.net/topics/617804998

私信博主进入交流群,一起学习探讨:
可添加博主:Yan--yingjie
如果想免费获取图书,也可添加博主微信,每周免费送数十本


import requests
from bs4 import BeautifulSoup
import openpyxl

# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content

# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')

# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
    hot_searches.append(item.text)

# 保存热搜数据到Excel
workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'

# 设置标题
sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:Yan-英杰')

# 写入热搜数据
for i in range(len(hot_searches)):
    sheet.cell(row=i+2, column=1, value=hot_searches[i])

workbook.save('百度热搜.xlsx')
print('热搜数据已保存到 百度热搜.xlsx')

效果图:

可视化完整代码:

????如果对CSDN周边以及有偿返现任务感兴趣:https://bbs.csdn.net/topics/617804998

私信博主进入交流群,一起学习探讨,如果对CSDN周边以及有偿返现任务感兴趣:
可添加博主:Yan--yingjie
如果想免费获取图书,也可添加博主微信,每周免费送数十本

import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt

# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content

# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')

# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
    hot_searches.append(item.text)

# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 绘制条形图
plt.figure(figsize=(15, 10))
x = range(len(hot_searches))
y = list(reversed(range(1, len(hot_searches)+1)))
plt.barh(x, y, tick_label=hot_searches, height=0.8)  # 调整条形图的高度

# 添加标题和标签
plt.title('百度热搜排行榜')
plt.xlabel('排名')
plt.ylabel('关键词')

# 调整坐标轴刻度
plt.xticks(range(1, len(hot_searches)+1))

# 调整条形图之间的间隔
plt.subplots_adjust(hspace=0.8, wspace=0.5)

# 显示图形
plt.tight_layout()
plt.show()

效果图:

【文末送书】?

参与活动
1??参与方式:关注、点赞、收藏,评论(人生苦短,我用python)
2??获奖方式:程序随机抽取 3位,每位小伙伴将获得一本书
3??活动时间:截止到 2024-1- 3??22:00:00

内容简介

  《Pandas数据分析》详细阐述了与Pandas数据分析相关的基本解决方案,主要包括数据分析导论、使用PandasDataFrame、使用Pandas进行数据整理、聚合Pandas DataFrame、使用Pandas和Matplotlib可视化数据、使用Seabom和自定义技术绘图、金融分析、基于规则的异常检测、Python机器学习入门、做出更好的预测、机器学习异常检测等内容。此外,该书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
  《Pandas数据分析》适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。

购买链接:

????????京东:https://item.jd.com/14065178.html

? ? ? ? 当当:http://product.dangdang.com/29599087.html

注:活动结束后会在我的主页动态如期公布中奖者,包邮到家。
?

文章来源:https://blog.csdn.net/m0_73367097/article/details/134762577
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。