LLM成功不可或缺的RLHF基于人类反馈的强化学习的概念、原理和应用

发布时间:2024年01月22日

基于人类反馈的强化学习(RLHF,Reinforcement Learning from Human Feedback)是人工智能(AI)领域的一个新兴研究领域,它将强化学习技术与人类反馈相结合,以训练能够学 习复杂任务的个体。该方法在提高人工智能系统的性能方面显示出前景,使其在各种应用中 更具有适应性和效率。
在这里插入图片描述
强化学习

在了解RLHF之前,我们需要先知道什么是RL,强化学习(RL)是一种机器学习,在这种学 习中,个体(Agent)通过与环境的互动来学习做决定。个体采取行动以实现一个特定的目标,根据其行动接受奖励或惩罚形式的反馈。随着时间的推移,个体学会了做出决策的最佳策略,以使其收到的累积奖励最大化。

基于人类反馈的强化学习

RLHF是一个将强化学习与人类反馈相结合的框架,以提高个体(Agent)在学习复杂任务中 的表现。在RLHF中,人类通过提供反馈参与学习过程,帮助个体更好地理解任务,更有效地 学习最优策略。将人类反馈纳入强化学习可以帮助克服与传统RL技术相关的一些挑战。人的 反馈可以用来提供指导,纠正错误,并提供关于环境和任务的额外信息,而这些信息可能是 个体(Agent)自己难以学习的。一些可以纳入RL的人类反馈的方式包括:

提供专家示范: 人类专家可以示范正确的行为,个体可以通过模仿或利用示范与强化学习技术相结 合来学习。

塑造奖励功能: 人类的反馈可以用来修改奖励功能,使其更有信息量,并与期望的行为更好地保持 一致。

提供纠正性反馈: 人类可以在训练期间向个体提供纠正性反馈,使其从错误中学习并改善其表现。

RLHF框架结构

RLHF框架主要包括以下几个关键组成部分:
环境 (Environment)
环境是个体所处的外部世界,它定义了任务的规则,以及个体可以执行的动作。环境对个体的行为做出反应,并提供状态信息和奖励。
个体 (Agent)
个体是与环境互动并学习的主体。它通过观察环境状态,采取行动,并根据环境的反馈来调整其策略。
人类反馈 (Human Feedback)
人类反馈是RLHF的核心组成部分。不同于传统强化学习只依赖预设的奖励函数,RLHF中的个体能够直接从人类的反馈中学习。这种反馈可以是示范、指导、纠正甚至是奖励函数的直接调整。
学习算法 (Learning Algorithm)
学习算法负责处理环境提供的数据和人类反馈,更新个体的决策策略。这可能包括模仿学习算法、策略优化算法等。

RLHF的应用

RLHF已在不同领域的各种应用中显示出前景,如:
智能机器人: RLHF可以用来训练机器人系统,使其以高精确度和高适应性完成复杂的任务,如操纵、运动和导航。

自动驾驶: RLHF可以通过纳入人类对驾驶行为和决策的反馈,帮助自主?辆学习安全和高效的驾 驶策略。

医疗保健: RLHF可以应用于训练人工智能系统,用于个性化的治疗计划、药物发现和其他医疗应 用,在这些方面人类的专业知识是至关重要的。

学习教育: RLHF可用于开发智能辅导系统,以适应个体学习者的需求,并根据人类的反馈提供个 性化的指导。

例如当我们将RLHF应用到自动驾驶的时候?是怎么运作的呢?在开发自动驾驶系统的过程中,致力于实现系统在多样化道路条件下的安全和高效驾驶。这一目标通过采纳基于人类反馈的强化学习(RLHF)框架得以实现,整个过程分为三个主要步骤。
首先,我们从专家司机那里收集示范驾驶数据和评价建议,为模型提供了初步的学习基础。
接着,这些数据被用于训练神经网络模型,通过模仿学习方法,如行为克隆,以及策略优化算法,如PPO或DDPG,系统不仅能学会模仿专家的驾驶技巧,还能进一步优化其决策策略。
最后一步,我们将专家的纠正性反馈和奖励调整融入学习过程,使得自动驾驶系统的性能不断提升。通过这种细致入微的训练方法,我们的系统不仅精准地复现了专家司机的操作,而且在面对新的驾驶情境时也能展现出高度的适应性和可靠性,显著提升了整体的学习效率。

RLHF的挑战

数据效率: 收集人类的反馈意?可能很费时和昂贵,因此,开发能够在有限的反馈意?下有效学习
的方法很重要。

**人类的偏?和不一致:**人类的反馈可能容易出现偏?和不一致,这可能会影响个体的学习过程和表现。

可扩展性: RLHF方法需要可扩展到高维的状态和行动空间,以及复杂的环境,以适用于现实世界 的任务

奖励的模糊性: 设计一个能准确代表所需行为的奖励函数是很有挑战性的,尤其是在包含人类反馈 的时候。

可转移性: 经过RLHF训练的个体应该能够将他们学到的技能转移到新的任务、环境或情况中。开 发促进转移学习和领域适应的方法对于实际应用是至关重要的。
安全性和稳健性: 确保RLHF个体是安全的,对不确定性、对抗性攻击和模型的错误规范是至关重 要的,特别是在安全关键的应用中。

想要了解更多RLHF的相关内容,我们近屿智能OJAC推出的《AIGC星辰大海:大模型工程师和产品专家深度训练营》就是学习这部分知识的最好选择。我们的课程是一场结合了线上与线下的双轨合流式学习体验。
别人教您使用AIGC产品,例如ChatGPT和MidJourney,我们教您增量预训练,精调大模型,和创造属于自己的AI产品!

您是否想利用AIGC为您打破职业与薪资的天花板?您是否想成为那个在行业里脱颖而出的AI专家?我们的培训计划,将是您实现这些梦想的起点。

让我带您了解一下近屿智能OJAC如何帮您开启AI的大门。
首先,为了让零基础的您也能轻松上手,我们特别设计了“Python强化双周学”这个先修课程。在两周的时间里,我们将通过在线强化学习,把大模型相关的Python编程技术娓娓道来。就算您现在对编程一窍不通,也不要担心,我们会带您一步步走进编程的世界。
然后,是我们的“AIGC星辰大海:大模型工程师与AIGC产品经理启航班”。这个课程包含6节精彩的直播课,不仅能让您深入了解ChatGPT等大模型的奥秘,还会带您领略至少20个来自全球的成功AIGC产品案例。想象一下,未来您同样有机会利用这些先进技术打造出热门AI产品!
更深层次的学习,则在“AIGC星辰大海:大模型工程师和产品专家深度训练营”中进行。这个深度训练营覆盖了从理论基础到实际操作的全过程,让您不仅学会理论,更能将知识应用到实际项目中。如果您想要深挖大模型的秘密?这里就是您的实验室!

如果您选择加入我们的OJAC标准会员,我们的"AI职场导航"项目,还将为您提供量身定制的职业机会,这些职位来自于我们广泛的行业网络,包括初创企业、中型企业以及全球知名公司。我们会根据您的技能、经验和职业发展愿景,为您筛选合适的机会。此外,我们也提供简历修改建议、面试准备指导和职业规划咨询,帮助您在竞争激烈的市场中脱颖而出。
同时您也可以享受到未来景观AI讲座暨每月技术洞见”系列讲座,获得最新的技术洞见。这不仅是一个学习的机会,更是一个与行业顶尖大咖直接交流的平台。

以下是我们大模型工程师和产品专家深度训练营的课程内容:

除此之外,现在报名我们即将开班的第六期AIGC星辰大海大模型工程师和产品经理训练营,您将可以参与到以下三个创新实战项目中的任意一个,这些项目不仅能够锻炼您的实战能力,还能让您在AIGC领域脱颖而出。
项目1:企业级知识问答GPT
这个项目将教您如何打造一个智能机器人,它能够接入企业内部的知识库,如技术文档、HR政策、销售指南等。您将学会如何使其具备强大的自然语言处理能力,进行复杂查询的理解和精确答案的提供。此外,该项目还包括教您如何让机器人保持对话上下文、支持多语言交流,并具备反馈学习机制,以不断提升服务质量。
项目2:行业级AI Agent
在这个项目中,您将学习如何为特定行业定制化AI Agent。您将被指导如何让它理解行业专有术语和工作流程,并训练它自动执行任务,如预约设置、数据输入和报告生成。这个项目不仅帮助您构建一个决策支持系统,还教您如何进行用户行为预测和性能监控与优化。
项目3:论文翻译
如果您对语言学习和学术研究有浓厚兴趣,这个项目将是您的理想选择。您将探索如何实现从英语到中文或其他目标语言的精准学术翻译,确保保留学术文献的深层含义。本项目还包括学术格式定制、专业词汇精确匹配以及广泛语言选项的训练,最后通过翻译效果评价系统,您将能够持续提升翻译质量。
无论您选择哪个项目,都将是您职业生涯中不可多得的实战经历。
我们诚邀您继续与我们携手前行。在未来的职业道路上,让我们共同探索AI的更多奥秘,共创辉煌。如果您还有任何疑问或者想要深入了解更多课程内容,请随时联系我们。我们期待着与您共同开启下一阶段的AI探索之旅。
加入我们的“AIGC星辰大海”训练营,让我们一起在AI的世界里创造不凡!立刻加入我们,开启您的AI大模型旅程,将梦想转变为现实。

文章来源:https://blog.csdn.net/Oven_OJAC/article/details/135749485
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。