本题就和?昨天的?416.?分割等和子集?很像了,可以尝试自己思考做一做。?
dp = [0] * 15001
total_sum = sum(stones)
target = total_sum // 2
for stone in stones: # 遍历物品
for j in range(target, stone - 1, -1): # 遍历背包
dp[j] = max(dp[j], dp[j - stone] + stone)
return total_sum - dp[target] - dp[target]
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums) # 计算nums的总和
if abs(target) > total_sum:
return 0 # 此时没有方案
if (target + total_sum) % 2 == 1:
return 0 # 此时没有方案
target_sum = (target + total_sum) // 2 # 目标和
dp = [0] * (target_sum + 1) # 创建动态规划数组,初始化为0
dp[0] = 1 # 当目标和为0时,只有一种方案,即什么都不选
for num in nums:
for j in range(target_sum, num - 1, -1):
dp[j] += dp[j - num] # 状态转移方程,累加不同选择方式的数量
return dp[target_sum] # 返回达到目标和的方案数
①、公式中dp[j]?
②、dp[0]=1
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums) # 计算nums的总和
if abs(target) > total_sum:
return 0 # 此时没有方案
if (target + total_sum) % 2 == 1:
return 0 # 此时没有方案
target_sum = (target + total_sum) // 2 # 目标和
# 创建二维动态规划数组,行表示选取的元素数量,列表示累加和
dp = [[0] * (target_sum + 1) for _ in range(len(nums) + 1)]
# 初始化状态
dp[0][0] = 1
# 动态规划过程
for i in range(1, len(nums) + 1):
for j in range(target_sum + 1):
dp[i][j] = dp[i - 1][j] # 不选取当前元素
if j >= nums[i - 1]:
dp[i][j] += dp[i - 1][j - nums[i - 1]] # 选取当前元素
return dp[len(nums)][target_sum] # 返回达到目标和的方案数
?
与之前力扣的“组合总和”相同,可以使用回溯解决
通过这道题目,先粗略了解,?01背包,完全背包,多重背包? 的区别,不过不用细扣,因为后面?对于?完全背包,多重背包?还有单独讲解。
class Solution:
def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
dp = [[0] * (n + 1) for _ in range(m + 1)] # 创建二维动态规划数组,初始化为0
# 遍历物品
for s in strs:
ones = s.count('1') # 统计字符串中1的个数
zeros = s.count('0') # 统计字符串中0的个数
# 遍历背包容量且从后向前遍历
for i in range(m, zeros - 1, -1):
for j in range(n, ones - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1) # 状态转移方程
return dp[m][n]